Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride.


Abstract

The molten globule state has been assumed to be a major intermediate of protein folding. We compared the stability of the native and acidic molten globule states of horse ferricytochrome c against heat, urea and guanidine hydrochloride (Gdn-HCl) using the intact species and species modified by various degrees of acetylation of the lysyl epsilon-amino groups. After acetylation, the amino groups cannot protonate at acidic pH. Thermal and urea-induced unfolding transitions measured by far-UV circular dichroism and differential scanning calorimetry showed that, whereas acetylation stabilizes the molten globule state at pH 2, it destabilizes the native state at pH 7, suggesting a difference in their mechanisms of conformational stability. On the other hand, the effects of Gdn-Hcl were remarkable. Contrary to what was expected from the thermal and urea-induced unfolding transitions, the Gdn-HCl-induced unfolding transition of the native state at pH 7 was insensitive to the extent of acetylation. At pH 2, Gdn-HCl at low concentrations stabilized the molten globule state and, at high concentrations, destabilized it. Consideration of the difference in the effects of Gdn-HCl from those of urea or heat indicated that, whereas the net positive charge repulsion destabilizes the molten globule state at pH 2, the local negative charge repulsion produced by acetylation of amino groups, and not the net charge, critically destabilizes the native state at pH 7. These results predict that, because of its ionic nature, Gdn-HCl will produce substantially different effects on the conformational states of some proteins compared with those of urea. Study holds ProTherm entries: 10021 Extra Details: cytochrome c; molten globule; denaturation; electrostatics

Submission Details

ID: ytem6tNV3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:39 p.m.

Version: 1

Publication Details
Hagihara Y;Tan Y;Goto Y,J. Mol. Biol. (1994) Comparison of the conformational stability of the molten globule and native states of horse cytochrome c. Effects of acetylation, heat, urea and guanidine-hydrochloride. PMID:8145245
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
1KTD 2002-01-15T00:00:00+0000 2.4 CRYSTAL STRUCTURE OF CLASS II MHC MOLECULE IEK BOUND TO PIGEON CYTOCHROME C PEPTIDE
2B4Z 2005-09-27T00:00:00+0000 1.5 Crystal structure of cytochrome C from bovine heart at 1.5 A resolution.
2YBB 2011-03-02T00:00:00+0000 19.0 Fitted model for bovine mitochondrial supercomplex I1III2IV1 by single particle cryo-EM (EMD-1876)
3J2T 2012-12-23T00:00:00+0000 9.5 An improved model of the human apoptosome
5C0Z 2015-06-12T00:00:00+0000 1.12 The structure of oxidized rat cytochrome c at 1.13 angstroms resolution
5C9M 2015-06-28T00:00:00+0000 1.36 The structure of oxidized rat cytochrome c (T28A) at 1.362 angstroms resolution.
5DF5 2015-08-26T00:00:00+0000 1.3 The structure of oxidized rat cytochrome c (T28E) at 1.30 angstroms resolution.
5JUY 2016-05-10T00:00:00+0000 4.1 Active human apoptosome with procaspase-9
6FF5 2018-01-03T00:00:00+0000 1.74 X-ray structure of bovine heart cytochrome c at high ionic strength
6N1O 2018-11-09T00:00:00+0000 1.55 Oxidized rat cytochrome c mutant (S47E)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
91.3 Cytochrome c P00021 CYC_COLLI
92.2 Cytochrome c P00020 CYC_ANAPL
92.3 Cytochrome c P81280 CYC_ALLMI
90.5 Cytochrome c Q52V10 CYC_SAISC
93.3 Cytochrome c P00012 CYC_MIRLE
93.3 Cytochrome c Q52V09 CYC_CEPBA
93.3 Cytochrome c P00013 CYC_MINSC
93.3 Cytochrome c P00014 CYC_MACGI
94.3 Cytochrome c P00011 CYC_CANLF
94.3 Cytochrome c P62898 CYC_RAT
94.3 Cytochrome c P00008 CYC_RABIT
94.3 Cytochrome c P62897 CYC_MOUSE
95.2 Cytochrome c P68098 CYC_LAMGU
95.2 Cytochrome c P68100 CYC_ESCRO
95.2 Cytochrome c P68099 CYC_CAMDR
94.3 Cytochrome c P00007 CYC_HIPAM
97.1 Cytochrome c P62896 CYC_SHEEP
97.1 Cytochrome c P62895 CYC_PIG
97.1 Cytochrome c P62894 CYC_BOVIN
99.0 Cytochrome c P68096 CYC_EQUBU
99.0 Cytochrome c P68097 CYC_EQUAS
100.0 Cytochrome c P00004 CYC_HORSE
90.3 Cytochrome c B4USV4 CYC_OTOGA