Molecular collapse: the rate-limiting step in two-state cytochrome c folding.


Experiments with cytochrome c (cyt c) show that an initial folding event, molecular collapse, is not an energetically downhill continuum as commonly presumed but represents a large-scale, time-consuming, cooperative barrier-crossing process. In the absence of later misfold-reorganization barriers, the early collapse barrier limits cyt c folding to a time scale of milliseconds. The collapse process itself appears to be limited by an uphill search for some coarsely determined transition state structure that can nucleate subsequent energetically downhill folding events. An earlier "burst phase" event at strongly native conditions appears to be a non-specific response of the unfolded chain to reduced denaturant concentration. The molecular collapse process may or may not require the co-formation of the amino- and carboxyl-terminal helices, which are present in an initial metastable intermediate directly following the rate-limiting collapse. After the collapse-nucleation event, folding can proceed rapidly in an apparent two-state manner, probably by way of a predetermined sequence of metastable intermediates that leads to the native protein structure (Bai et al., Science 269:192-197, 1995). Study holds ProTherm entries: 11311 Extra Details: protein folding; folding kinetics; folding barriers

Submission Details


Submitter: Connie Wang

Submission Date: April 24, 2018, 8:42 p.m.

Version: 1

Publication Details
Sosnick TR;Mayne L;Englander SW,Proteins (1996) Molecular collapse: the rate-limiting step in two-state cytochrome c folding. PMID:9162942
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Cytochrome c P00004 CYC_HORSE
99.0 Cytochrome c P68097 CYC_EQUAS
99.0 Cytochrome c P68096 CYC_EQUBU
97.1 Cytochrome c P62894 CYC_BOVIN
97.1 Cytochrome c P62895 CYC_PIG
97.1 Cytochrome c P62896 CYC_SHEEP
94.3 Cytochrome c P00007 CYC_HIPAM
95.2 Cytochrome c P68099 CYC_CAMDR
95.2 Cytochrome c P68100 CYC_ESCRO
95.2 Cytochrome c P68098 CYC_LAMGU
94.3 Cytochrome c P62897 CYC_MOUSE
94.3 Cytochrome c P00008 CYC_RABIT
94.3 Cytochrome c P62898 CYC_RAT
94.3 Cytochrome c P00011 CYC_CANLF
93.3 Cytochrome c P00014 CYC_MACGI
93.3 Cytochrome c P00013 CYC_MINSC
93.3 Cytochrome c Q52V09 CYC_CEPBA
93.3 Cytochrome c P00012 CYC_MIRLE
90.5 Cytochrome c Q52V10 CYC_SAISC
92.3 Cytochrome c P81280 CYC_ALLMI
92.2 Cytochrome c P00020 CYC_ANAPL
91.3 Cytochrome c P00021 CYC_COLLI
90.3 Cytochrome c B4USV4 CYC_OTOGA