Fragment reconstitution of a small protein: folding energetics of the reconstituted immunoglobulin binding domain B1 of streptococcal protein G.


Abstract

To elucidate early stages in protein folding, we have adopted a fragment reconstitution method for small proteins. This approach is expected to provide nuclei for protein folding and to allow us to investigate folding mechanisms. In previous work [Kobayashi, N., et al. (1995) FEBS Lett. 366, 99-103.] we demonstrated the association of two complementary fragments, derived from the immunoglobulin G-binding domain B1 of streptococcal Protein G, and showed the structural similarity between the reconstituted domain and the uncleaved wild-type domain. In this work we have further characterized the reconstituted domain as well as the uncleaved domain thermodynamically by means of differential scanning calorimetry (DSC) and circular dichroism (CD) measurements. Although composed of short peptide fragments not linked by covalent bonds, the reconstituted domain showed a typical folding/unfolding curve in both DSC and CD melting measurements and behaved like a globular protein. The domain was not very stable, and the small value of the Gibbs free energy corresponded to the class of the weakest protein-protein binding systems. The denaturation temperature of 0. 78 mM solution was 313 K at pH 5.9 as measured by DSC, which was more than 40 degrees lower than the uncleaved domain. This apparent instability was primarily caused by entropic disadvantage attributed to a bimolecular reaction. The temperature dependence of the enthalpy change from the folded to the unfolded state was almost identical for the reconstituted domain and the uncleaved one. This indicates that most of the noncovalent intramolecular interactions stabilizing the native structure, such as hydrogen bonding and hydrophobic interactions, are regenerated in the reconstituted domain. By comparing the equilibrium constants of the reconstituted and uncleaved domains, we determined the effective concentration to be approximately 6 M at 298 K. Structure-based estimation of the thermodynamic properties from the values of accessible surface areas showed that approximately 35% of the total heat capacity change and approximately 25% of the total enthalpy change can be attributed to the interchain interaction at 298 K. Furthermore, the folding/unfolding equilibrium of beta-hairpin structure of the fragment 41-56 alone was also characterized. These analyses allow us to envision the microdomain folding mechanism of the Protein G B1 domain, in which segment 41-56 first forms a stable beta-hairpin structure and then collides with segment 1-40, followed by spontaneous folding of the whole molecule. Study holds ProTherm entries: 5400, 5401, 5402, 5403, 5404, 5405, 5406, 5407, 5408, 5409, 5410 Extra Details: transition 1

Submission Details

ID: rjKEeSWp3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:30 p.m.

Version: 1

Publication Details
Honda S;Kobayashi N;Munekata E;Uedaira H,Biochemistry (1999) Fragment reconstitution of a small protein: folding energetics of the reconstituted immunoglobulin binding domain B1 of streptococcal protein G. PMID:9930980
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
1EM7 2000-03-16T00:00:00+0000 2.0 HELIX VARIANT OF THE B1 DOMAIN FROM STREPTOCOCCAL PROTEIN G
1GB1 1991-05-15T00:00:00+0000 0 A NOVEL, HIGHLY STABLE FOLD OF THE IMMUNOGLOBULIN BINDING DOMAIN OF STREPTOCOCCAL PROTEIN G
1IGC 1994-08-05T00:00:00+0000 2.6 IGG1 FAB FRAGMENT (MOPC21) COMPLEX WITH DOMAIN III OF PROTEIN G FROM STREPTOCOCCUS
1IGD 1994-08-05T00:00:00+0000 1.1 THE THIRD IGG-BINDING DOMAIN FROM STREPTOCOCCAL PROTEIN G: AN ANALYSIS BY X-RAY CRYSTALLOGRAPHY OF THE STRUCTURE ALONE AND IN A COMPLEX WITH FAB
1LE3 2002-04-09T00:00:00+0000 0 NMR Structure of Tryptophan Zipper 4: A Stable Beta-Hairpin Peptide Based on the C-terminal Hairpin of the B1 Domain of Protein G
1MPE 2002-09-12T00:00:00+0000 0 Ensemble of 20 structures of the tetrameric mutant of the B1 domain of streptococcal protein G
1MVK 2002-09-25T00:00:00+0000 2.5 X-ray structure of the tetrameric mutant of the B1 domain of streptococcal protein G
1PGA 1993-11-23T00:00:00+0000 2.07 TWO CRYSTAL STRUCTURES OF THE B1 IMMUNOGLOBULIN-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN G AND COMPARISON WITH NMR
1PGB 1993-11-23T00:00:00+0000 1.92 TWO CRYSTAL STRUCTURES OF THE B1 IMMUNOGLOBULIN-BINDING DOMAIN OF STREPTOCCOCAL PROTEIN G AND COMPARISON WITH NMR
1PGX 1992-04-03T00:00:00+0000 1.66 THE 1.66 ANGSTROMS X-RAY STRUCTURE OF THE B2 IMMUNOGLOBULIN-BINDING DOMAIN OF STREPTOCOCCAL PROTEIN G AND COMPARISON TO THE NMR STRUCTURE OF THE B1 DOMAIN

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Immunoglobulin G-binding protein G P06654 SPG1_STRSG
100.0 Immunoglobulin G-binding protein G P19909 SPG2_STRSG