Fluorescence and conformational stability studies of Staphylococcus nuclease and its mutants, including the less stable nuclease-concanavalin A hybrids.


Abstract

We report steady-state and time-resolved fluorescence studies with the single tryptophan protein, Staphylococcus aureus A, and several of its site-directed mutants. A couple of these mutants, nuclease-conA and nuclease-conA-S28G (which are hybrid proteins containing a six amino acid beta-turn substitute from concanavalin A), are found to have a much lower thermodynamic stability than the wild type. The thermal transition temperatures for nuclease-conA and S28G are 32.8 and 30.5 degrees C, which are about 20 degrees C lower than the Tm for wild-type nuclease A. These mutant proteins also are denatured by a much lower concentration of the denaturants urea and guanidine hydrochloride. We also show that an unfolding transition in the structure of the nuclease-conA hybrids can be induced by relatively low hydrostatic pressure (approximately 700 bar). The free energy for unfolding of nuclease-conA (and nuclease-conA-S28G) is found to be only 1.4 kcal/mol (and 1.2 kcal/mol) by thermal, urea, guanidine hydrochloride, and pressure unfolding. Time-resolved fluorescence intensity and anisotropy measurements with nuclease-conA-S28G show the temperature-, urea-, and pressure-perturbed states each to have a reduced average intensity decay time and to depolarize with a rotational correlation time of approximately 1.0 ns (as compared to a rotational correlation time of 11 ns for the native form of nuclease-conA-S28G at 20 degrees C). Study holds ProTherm entries: 378, 379, 380, 381, 382 Extra Details: Staphylococcus nuclease; conformational stability; free energy

Submission Details

ID: rayqfKrv3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:15 p.m.

Version: 1

Publication Details
Eftink MR;Ghiron CA;Kautz RA;Fox RO,Biochemistry (1991) Fluorescence and conformational stability studies of Staphylococcus nuclease and its mutants, including the less stable nuclease-concanavalin A hybrids. PMID:1991099
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
4WRD 2014-10-23T00:00:00+0000 1.65 Crystal structure of Staphylcoccal nulease variant Delta+PHS V66E L125E at cryogenic temperature
2LKV 2011-10-21T00:00:00+0000 0 Staphylococcal Nuclease PHS variant
2M00 2012-10-14T00:00:00+0000 0 Solution structure of staphylococcal nuclease E43S mutant in the presence of ssDNA and Cd2+
2OXP 2007-02-20T00:00:00+0000 2.0 Crystal Structure of Staphylococcal Nuclease mutant V66D/P117G/H124L/S128A
3D4W 2008-05-15T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS A109R at cryogenic temperature
3D8G 2008-05-23T00:00:00+0000 1.99 Crystal structure of Staphylococcal nuclease variant Delta+PHS I72R at cryogenic temperature
3MVV 2010-05-04T00:00:00+0000 1.72 Crystal structure of Staphylococcal nuclease variant Delta+PHS F34A at cryogenic temperature
3QOJ 2011-02-10T00:00:00+0000 1.6 Cryogenic structure of Staphylococcal nuclease variant D+PHS/V23K
3QOL 2011-02-10T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant D+PHS/V23E at pH 6 determined at 100 K
3R3O 2011-03-16T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS T62A at cryogenic temperature and with high redundancy

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
99.3 Thermonuclease Q6GIK1 NUC_STAAR
99.3 Thermonuclease Q8NXI6 NUC_STAAW
99.3 Thermonuclease Q6GB41 NUC_STAAS
99.1 Thermonuclease Q7A6P2 NUC_STAAN
99.1 Thermonuclease Q99VJ0 NUC_STAAM
99.3 Thermonuclease Q5HHM4 NUC_STAAC
100.0 Thermonuclease P00644 NUC_STAAU