The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase.


Abstract

The propensity for peptide bonds to adopt the trans configuration in native and unfolded proteins, and the relatively slow rates of cis-trans isomerization reactions, imply that the formation of cis peptide bonds in native conformations are likely to limit folding reactions. The role of the conserved cis Gly95-Gly96 peptide bond in dihydrofolate reductase (DHFR) from Escherichia coli was examined by replacing Gly95 with alanine. The introduction of a beta carbon at position 95 is expected to increase the propensity for the trans isomer and perturb the isomerization reaction required to reach the native conformation. Although G95A DHFR is 1.30 kcal mol(-1) less stable than the wild-type protein, it adopts a well-folded structure that can be chemically denatured in a cooperative fashion. The mutant protein also retains the complex refolding kinetic pattern attributed to a parallel-channel mechanism in wild-type DHFR. The spectroscopic response upon refolding monitored by Trp fluorescence and the absence of a Trp/Trp exciton coupling apparent in the far-UV CD spectrum of the wild-type protein, however, indicated that the tertiary structure of the folded state for G95A DHFR is altered. The addition of methotrexate (MTX), a tight-binding inhibitor, to folded G95A DHFR restored the exciton coupling and the fluorescence properties through five slow kinetic events whose relaxation times are independent of the ligand and the denaturant concentrations. The results were interpreted to mean that MTX-binding drives the formation of the cis isomer of the peptide bond between Ala95 and Gly96 in five compact and stable but not wild-type-like conformations that contain the trans isomer. Folding studies in the presence of MTX for both wild-type and G95A DHFR support the notion that the cis peptide bond between Gly95 and Gly96 in the wild-type protein forms during four parallel rate-limiting steps, which are primarily controlled by folding reactions, and lead directly to a set of native, or native-like, conformers. The isomerization of the cis peptide bond is not a source of the parallel channels that characterize the complex folding mechanism for DHFR. Study holds ProTherm entries: 16141, 16142 Extra Details: 0.2 mM K2EDTA and 1 mM beta-mercaptoethanol were added in the experiment. non-prolyl; peptide bond; isomerization; folding; DHFR

Submission Details

ID: rSU4URTD3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:47 p.m.

Version: 1

Publication Details
Svensson AK;O'Neill JC;Matthews CR,J. Mol. Biol. (2003) The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase. PMID:12559923
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
6CW7 2018-03-30T00:00:00+0000 1.03 E. coli DHFR product complex with (6S)-5,6,7,8-TETRAHYDROFOLATE
6CXK 2018-04-03T00:00:00+0000 1.11 E. coli DHFR substrate complex with Dihydrofolate
6CYV 2018-04-06T00:00:00+0000 1.3 E. coli DHFR ternary complex with NADP and dihydrofolate
1DDR 1995-06-29T00:00:00+0000 2.45 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE AND UREA
1DDS 1995-06-29T00:00:00+0000 2.2 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE
1DHI 1993-10-29T00:00:00+0000 1.9 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DHJ 1993-10-29T00:00:00+0000 1.8 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DRA 1991-11-06T00:00:00+0000 1.9 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRB 1991-11-06T00:00:00+0000 1.96 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRE 1996-11-28T00:00:00+0000 2.6 DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
91.8 Dihydrofolate reductase P31074 DYR_KLEAE
96.2 Dihydrofolate reductase P31073 DYR_CITFR
100.0 Dihydrofolate reductase P0ABQ6 DYR_SHIFL
100.0 Dihydrofolate reductase P0ABQ4 DYR_ECOLI
100.0 Dihydrofolate reductase P0ABQ5 DYR_ECOL6