Folding mechanism of mutant human lysozyme C77/95A with increased secretion efficiency in yeast.


Abstract

A mutant human lysozyme C77/95A, in which Cys77 and Cys95 are replaced with alanine, has been characterized by 8-fold greater secretion in yeast (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967) and almost the same three-dimensional structure as wild-type human lysozyme (Inaka, K., Taniyama, Y., Kikuchi, M., Morikawa, K., and Matsushima, M. (1991) J. Biol. Chem. 266, 12599-12603). To clarify the molecular features of C77/95A and the reason for its increased secretion in yeast, the stabilities of the mutant C77/95A and the wild-type proteins were examined by guanidine hydrochloride denaturation, and the unfolding-refolding kinetics were determined from circular dichroism and fluorescence stopped-flow measurements. Equilibrium experiments showed that the delta G of unfolding of C77/95A in water was 5.8 kcal/mol less stable than that of the wild-type protein at pH 4.0 and 10 degrees C. The unfolding rate of C77/95A was 4 orders of magnitude faster than that of the wild-type protein whereas the two proteins shared similar refolding rates. The slowly refolding phase of the wild-type protein disappeared in C77/95A, indicating that the disulfide bond affects this phase. These observations show that the disulfide bond Cys77-Cys95 contributes to the stabilization of the folded form of human lysozyme by suppressing the unfolding rate and that the increase in the unfolding rate, or the disappearance of the slowly refolding phase in vitro, could correlate with the increase in secretion efficiency in vivo. Study holds ProTherm entries: 823, 824, 825, 826 Extra Details: human lysozyme; circular dichroism; disulfide bond; stabilization;,folding mechanism

Submission Details

ID: oMWdAry63

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:16 p.m.

Version: 1

Publication Details
Taniyama Y;Ogasahara K;Yutani K;Kikuchi M,J. Biol. Chem. (1992) Folding mechanism of mutant human lysozyme C77/95A with increased secretion efficiency in yeast. PMID:1537844
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
133L 1993-06-01T00:00:00+0000 1.77 ROLE OF ARG 115 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME. X-RAY STRUCTURE OF HIS 115 AND GLU 115 MUTANTS
134L 1993-06-01T00:00:00+0000 1.77 ROLE OF ARG 115 IN THE CATALYTIC ACTION OF HUMAN LYSOZYME. X-RAY STRUCTURE OF HIS 115 AND GLU 115 MUTANTS
1B5U 1999-01-11T00:00:00+0000 1.8 CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANT
1B5V 1999-01-11T00:00:00+0000 2.17 CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS
1B5W 1999-01-11T00:00:00+0000 2.17 CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS
1B5X 1999-01-11T00:00:00+0000 2.0 Contribution of hydrogen bonds to the conformational stability of human lysozyme: calorimetry and x-ray analysis of six ser->ala mutants
1B5Y 1999-01-11T00:00:00+0000 2.2 CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS
1B5Z 1999-01-11T00:00:00+0000 2.2 CONTRIBUTION OF HYDROGEN BONDS TO THE CONFORMATIONAL STABILITY OF HUMAN LYSOZYME: CALORIMETRY AND X-RAY ANALYSIS OF SIX SER->ALA MUTANTS
1B7L 1999-01-24T00:00:00+0000 1.8 VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES
1B7M 1999-01-24T00:00:00+0000 2.2 VERIFICATION OF SPMP USING MUTANT HUMAN LYSOZYMES

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
96.9 Lysozyme C P79180 LYSC_HYLLA
99.2 Lysozyme C P79239 LYSC_PONPY
100.0 Lysozyme C P79179 LYSC_GORGO
100.0 Lysozyme C P61628 LYSC_PANTR
100.0 Lysozyme C P61627 LYSC_PANPA
100.0 Lysozyme C P61626 LYSC_HUMAN