We previously suggested that proteins gain more stability from the burial and hydrogen bonding of polar groups than from the burial of nonpolar groups (Pace, C. N. (2001) Biochemistry 40, 310-313). To study this further, we prepared eight Thr-to-Val mutants of RNase Sa, four in which the Thr side chain is hydrogen-bonded and four in which it is not. We measured the stability of these mutants by analyzing their thermal denaturation curves. The four hydrogen-bonded Thr side chains contribute 1.3 +/- 0.9 kcal/mol to the stability; those that are not still contribute 0.4 +/- 0.9 kcal/mol to the stability. For 40 Thr-to-Val mutants of 11 proteins, the average decrease in stability is 1.0 +/- 1.0 kcal/mol when the Thr side chain is hydrogen-bonded and 0.0 +/- 0.5 kcal/mol when it is not. This is clear evidence that hydrogen bonds contribute favorably to protein stability. In addition, we prepared four Val-to-Thr mutants of RNase Sa, measured their stability, and determined their crystal structures. In all cases, the mutants are less stable than the wild-type protein, with the decreases in stability ranging from 0.5 to 4.4 kcal/mol. For 41 Val-to-Thr mutants of 11 proteins, the average decrease in stability is 1.8 +/- 1.3 kcal/mol and is unfavorable for 40 of 41 mutants. This shows that placing an [bond]OH group at a site designed for a [bond]CH3 group is very unfavorable. So, [bond]OH groups can contribute favorably to protein stability, even if they are not hydrogen-bonded, if the site was selected for an [bond]OH group, but they will make an unfavorable contribution to stability, even if they are hydrogen-bonded, when they are placed at a site selected for a [bond]CH3 group. The contribution that polar groups make to protein stability depends strongly on their environment. Study holds ProTherm entries: 16637, 16638, 16639, 16640, 16641, 16642, 16643, 16644, 16645, 16646, 16647, 16648, 16649, 16650, 16651, 16652, 16653, 16654, 16655, 16656, 16657, 16658, 16659, 16660, 16661 Extra Details: hydrogen bonding; polar groups; protein stability; environment
ID: n98xFrwr
Submitter: Connie Wang
Submission Date: April 24, 2018, 8:48 p.m.
Version: 1
Number of data points | 50 |
Proteins | Guanyl-specific ribonuclease Sa ; RIBONUCLEASE |
Unique complexes | 13 |
Assays/Quantities/Protocols | Experimental Assay: ddG ; Experimental Assay: Tm ; Experimental Assay: dHvH ; Derived Quantity: dTm |
Libraries | Mutations for sequence DVSGTVCLSALPPEATDTLNLIASDGPFPYSQDGVVFQNRESVLPTQSYGYYHEYTVITPGARTRGTRRIITGEATQEDYYTGDHYATFSLIDQTC |
Colors: | D | E | R | H | K | S | T | N | Q | A | V | I | L | M | F | Y | W | C | G | P |
---|
Percent Identity | Matching Chains | Protein | Accession | Entry Name |
---|---|---|---|---|
100.0 | Guanyl-specific ribonuclease Sa | P05798 | RNSA_KITAU |