Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156----aspartic acid.


Abstract

The structure of the mutant of bacteriophage T4 lysozyme in which Gly-156 is replaced by aspartic acid is described. The lysozyme was isolated by screening for temperature-sensitive mutants and has a melting temperature at pH 6.5 that is 6.1 degrees C lower than wild type. The mutant structure is destabilized, in part, because Gly-156 has conformational angles (phi, psi) that are not optimal for a residue with a beta-carbon. High resolution crystallographic refinement of the mutant structure (R = 17.7% at 1.7 A resolution) shows that the Gly----Asp substitution does not significantly alter the configurational angles (phi, psi) but forces the backbone to move, as a whole, approximately 0.6 A away from its position in wild-type lysozyme. This induced strain weakens a hydrogen bond network that exists in the wild-type structure and also contributes to the reduced stability of the mutant lysozyme. The introduction of an acidic side chain reduces the overall charge on the molecule and thereby tends to increase the stability of the mutant structure relative to wild type. However, at neutral pH this generalized electrostatic stabilization is offset by specific electrostatic repulsion between Asp-156 and Asp-92. The activity of the mutant lysozyme is approximately 50% that of wild-type lysozyme. This reduction in activity might be due to introduction of a negative charge and/or perturbation of the surface of the molecule in the region that is assumed to interact with peptidoglycan substrates. Study holds ProTherm entries: 1334, 1335, 1336, 1337, 13690, 13691 Extra Details: T4 lysozyme; temperature-sensitive; crystallographic refinement;,electrostatic stabilization; structural analysis

Submission Details

ID: hRopq9XT4

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:17 p.m.

Version: 1

Publication Details
Gray TM;Matthews BW,J. Biol. Chem. (1987) Structural analysis of the temperature-sensitive mutant of bacteriophage T4 lysozyme, glycine 156----aspartic acid. PMID:3680274
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
102L 1992-09-29T00:00:00+0000 1.74 HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME
103L 1992-09-29T00:00:00+0000 1.9 HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME
104L 1992-09-29T00:00:00+0000 2.8 HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME
107L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
108L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
109L 1992-12-17T00:00:00+0000 1.85 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
110L 1992-12-17T00:00:00+0000 1.7 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
111L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
112L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
113L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Endolysin P00720 ENLYS_BPT4