Importance of the C-terminal helix to the stability and enzymatic activity of Escherichia coli ribonuclease H.


Abstract

The ribonuclease H (RNase H) family of enzymes selectively degrades the RNA strand of RNA-DNA hybrids. This activity is essential for retroviruses such as HIV and resides in a domain of the larger reverse transcriptase molecule. RNase H from Escherichia coli is the best-characterized member of the family and serves as a model for structure/function studies. Despite having almost identical alpha + beta folds, the isolated domain from HIV is inactive and much less stable than the E. coli homolog. The HIV domain also shows increased disorder in its C-terminal regions (E-helix and His-containing loop). We investigated the importance of this region by studying a variant of E. coli RNase H lacking these elements (RNHdeltaE). Despite the elimination of 33 of 155 residues (including a complete helix), this C-terminal deletion mutant folds cooperatively as a subdomain. Surprisingly, this protein lacking residues near the active site retains weak Mn2+-dependent activity. A peptide corresponding to the deleted E-helix is helical in isolation and stimulates the activity of the deletion mutant in vitro. These results have implications for the catalytic mechanism of RNase H and drug design targeted to HIV reverse transcriptase. Study holds ProTherm entries: 2761, 2762 Extra Details: measurement was made in the presence of 0.8M GdnHCl ribonuclease HI; stability; helix; subdomain; HIV;,Escherichia coli; activity

Submission Details

ID: gVxPLfCT

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:19 p.m.

Version: 1

Publication Details
Goedken ER;Raschke TM;Marqusee S,Biochemistry (1997) Importance of the C-terminal helix to the stability and enzymatic activity of Escherichia coli ribonuclease H. PMID:9188727
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Ribonuclease HI A7ZHV1 RNH_ECO24
100.0 Ribonuclease HI B7MBJ0 RNH_ECO45
100.0 Ribonuclease HI P0A7Y6 RNH_ECO57
100.0 Ribonuclease HI B5Z0I8 RNH_ECO5E
100.0 Ribonuclease HI B7NKW4 RNH_ECO7I
100.0 Ribonuclease HI B7MQ23 RNH_ECO81
100.0 Ribonuclease HI B7M213 RNH_ECO8A
100.0 Ribonuclease HI C4ZRV1 RNH_ECOBW
100.0 Ribonuclease HI B1XD78 RNH_ECODH
100.0 Ribonuclease HI P0A7Y5 RNH_ECOL6
100.0 Ribonuclease HI B1IPU4 RNH_ECOLC
100.0 Ribonuclease HI P0A7Y4 RNH_ECOLI
100.0 Ribonuclease HI B7N876 RNH_ECOLU
100.0 Ribonuclease HI B6HZS7 RNH_ECOSE
100.0 Ribonuclease HI B1LHM3 RNH_ECOSM
100.0 Ribonuclease HI B7LW89 RNH_ESCF3
100.0 Ribonuclease HI B2U352 RNH_SHIB3
100.0 Ribonuclease HI Q325T2 RNH_SHIBS
100.0 Ribonuclease HI Q32JP9 RNH_SHIDS
100.0 Ribonuclease HI P0A7Y7 RNH_SHIFL
100.0 Ribonuclease HI Q3Z5E9 RNH_SHISS
99.4 Ribonuclease HI B7UJB0 RNH_ECO27
99.4 Ribonuclease HI B7LHC0 RNH_ECO55
99.4 Ribonuclease HI A7ZWF6 RNH_ECOHS
99.4 Ribonuclease HI Q0TLC3 RNH_ECOL5
93.5 Ribonuclease HI A8AKR0 RNH_CITK8
93.5 Ribonuclease HI B5F8X2 RNH_SALA4
93.5 Ribonuclease HI A9MPF1 RNH_SALAR
93.5 Ribonuclease HI Q57SZ6 RNH_SALCH
93.5 Ribonuclease HI B5FJ58 RNH_SALDC
93.5 Ribonuclease HI B5R449 RNH_SALEP
93.5 Ribonuclease HI B5R5L3 RNH_SALG2
93.5 Ribonuclease HI B4TK85 RNH_SALHS
93.5 Ribonuclease HI B4SV39 RNH_SALNS
93.5 Ribonuclease HI Q5PFD8 RNH_SALPA
93.5 Ribonuclease HI A9MZ19 RNH_SALPB
93.5 Ribonuclease HI B5BDW5 RNH_SALPK
93.5 Ribonuclease HI B4TYH0 RNH_SALSV
93.5 Ribonuclease HI P0A2C0 RNH_SALTI
93.5 Ribonuclease HI P0A2B9 RNH_SALTY
92.9 Ribonuclease HI C0Q6N2 RNH_SALPC
90.9 Ribonuclease HI B5Y1G2 RNH_KLEP3
90.9 Ribonuclease HI A6T512 RNH_KLEP7