Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state.


In order to quantitate the contributions of the polar, uncharged amino acids to the stability of the native state of staphylococcal nuclease, each of the 13 alanines, 9 glycines, 9 threonines, 6 prolines, 6 glutamines, 6 asparagines, and 3 serines was substituted, either with both alanine and glycine or with 1 of these 2 amino acids plus valine. For each mutant, the stability to reversible denaturation (delta GH2O) was quantitated by determining the Kapp for this reaction as a function of guanidine hydrochloride concentration. In addition, the parameter mGuHCl (= d(delta G)/d[GuHCl]) was calculated from the data. To identify the local structural features responsible for the relatively large and variable changes in delta GH2O and mGuHCl observed for the same type of substitution at different locations in nuclease, statistical correlations were sought between delta GH2O, mGuHCl, and a number of descriptors of the local structure. As with substitutions of the large hydrophobic amino acids [Shortle, D., Stites, W. E., & Meeker, A. K. (1990) Biochemistry 29, 8033-8041], mutation of polar, uncharged residues to Gly leads to a change in stability that, on average, correlates well with the degree to which the wild-type residue is buried. This correlation is especially significant for threonine, an amino acid with both polar and hydrophobic character, but is not demonstrated for the more typically hydrophobic residue alanine. As reported in the previous study of alanine/glycine substitutions of hydrophobic residues, a significant correlation between changes in stability and changes in the value of mGuHCl is again observed, strengthening the conclusion that the putative structural changes in the denatured state which lead to increases or decreases in mGuHCl are responsible for a significant fraction of the stability loss for an average mutant. The existence of this correlation is consistent with the denatured state of wild-type staphylococcal nuclease having evolved to a relatively high free energy via optimization of a balance between a maximal exposure of hydrophobic surface and a minimal gain in chain entropy. On average, mutations are less stable in proportion to the extent of which they perturb this balance. A new and puzzling correlation is reported between the extent of buriedness of a residue in the wild-type native state versus the difference in mGuHCl between the Ala mutation and the Gly mutation at that position. Study holds ProTherm entries: 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 2027, 2028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2038, 2039, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2049, 2050, 2051, 2052, 2053, 2054, 2055, 2056, 2057, 2058, 2059, 2060, 2061, 2062, 2063, 2064, 2065, 2066, 2067, 2068, 2069, 2070, 2071, 2072, 2073, 2074, 2075, 2076, 2077, 2078, 2079, 2080, 2081, 2082, 2083, 2084, 2085, 2086, 2087, 2088, 2089, 2090 Extra Details: m value is relative to the wild type value of 6.85 kcal/mol/M,which has been normalised to 1.00 staphylococcal nuclease; free energy; hydrophobic;,mutational effects; stability

Submission Details

ID: fcmmmBrF4

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:18 p.m.

Version: 1

Publication Details
Green SM;Meeker AK;Shortle D,Biochemistry (1992) Contributions of the polar, uncharged amino acids to the stability of staphylococcal nuclease: evidence for mutational effects on the free energy of the denatured state. PMID:1610820
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)

Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
4WRD 2014-10-23T00:00:00+0000 1.65 Crystal structure of Staphylcoccal nulease variant Delta+PHS V66E L125E at cryogenic temperature
2LKV 2011-10-21T00:00:00+0000 0 Staphylococcal Nuclease PHS variant
2M00 2012-10-14T00:00:00+0000 0 Solution structure of staphylococcal nuclease E43S mutant in the presence of ssDNA and Cd2+
2OXP 2007-02-20T00:00:00+0000 2.0 Crystal Structure of Staphylococcal Nuclease mutant V66D/P117G/H124L/S128A
3D4W 2008-05-15T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS A109R at cryogenic temperature
3D8G 2008-05-23T00:00:00+0000 1.99 Crystal structure of Staphylococcal nuclease variant Delta+PHS I72R at cryogenic temperature
3MVV 2010-05-04T00:00:00+0000 1.72 Crystal structure of Staphylococcal nuclease variant Delta+PHS F34A at cryogenic temperature
3QOJ 2011-02-10T00:00:00+0000 1.6 Cryogenic structure of Staphylococcal nuclease variant D+PHS/V23K
3QOL 2011-02-10T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant D+PHS/V23E at pH 6 determined at 100 K
3R3O 2011-03-16T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS T62A at cryogenic temperature and with high redundancy

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
99.3 Thermonuclease Q6GIK1 NUC_STAAR
99.3 Thermonuclease Q8NXI6 NUC_STAAW
99.3 Thermonuclease Q6GB41 NUC_STAAS
99.1 Thermonuclease Q7A6P2 NUC_STAAN
99.1 Thermonuclease Q99VJ0 NUC_STAAM
99.3 Thermonuclease Q5HHM4 NUC_STAAC
100.0 Thermonuclease P00644 NUC_STAAU