Origin of conformational dynamics in a globular protein.


Abstract

Protein structures are dynamic, undergoing motions that can play a vital role in function. However, the link between primary sequence and conformational dynamics remains poorly understood. Here, we studied how conformational dynamics can arise in a globular protein by evaluating the impact of individual core-residue substitutions in DANCER-3, a streptococcal protein G domain β1 variant that we previously designed to undergo a specific mode of conformational exchange that has never been observed in the wild-type protein. Using a combination of solution NMR experiments and molecular dynamics simulations, we demonstrate that only two mutations are necessary to create this conformational exchange, and that these mutations work synergistically, with one destabilizing the native structure and the other allowing two new conformational states to be accessed on the energy landscape. Overall, our results show how dynamics can appear in a stable globular fold, a critical step in the molecular evolution of dynamics-linked functions.

Submission Details

ID: fXeywkaX4

Submitter: Marc Mayer

Submission Date: May 9, 2020, 11:10 a.m.

Version: 2

Publication Details
Damry AM, Mayer MM, Broom A, Goto NK, Chica RA,Communication Biology (2019) Origin of conformational dynamics in a globular protein. PMID:31799435
Additional Information

This is an updated version of study HciYX5Lf3.

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Immunoglobulin G-binding protein G P06654 SPG1_STRSG
100.0 Immunoglobulin G-binding protein G P19909 SPG2_STRSG