Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts.


Abstract

The thermal transition of RNase T1 was studied by two different methods; tryptophan residue fluorescence and circular dichroism. The fluorescence measurements provide information about the environment of the indole group and CD measurements on the gross conformation of the polypeptide chain. Both measurements at pH 5 gave the same transition temperature of 56 degrees C and the same thermodynamic quantities, delta Htr (= 120 kcal/mol) and delta Str (= 360 eu/mol), for the transition from the native state to the thermally denatured state, indicating simultaneous melting of the whole molecule including the hydrophobic region where the tryptophan residue is buried. Stabilization by salts was observed in the pH range from 2 to 10, since the presence of 0.5 m NaCL caused an increase of about 5 degrees C to 10 degrees C in the transition temperature, depending on the pH. The fluorescence measurements on the RNase T1 complexed with 2'-GMP showed a transition with delta Htr =167 kcal/mol and delta Str =497 eu/mol at a transition temperature about 6 degrees C higher than that for the free enzyme. The large value of delta Htr for RNase T1 indicates the highly cooperative nature of the thermal transition; this value is much higher than those of other globular proteins. Analysis of the CD spectrum of thermally denatured RNase T1 suggests that the denatured state is not completely random but retains some ordered structures. Study holds ProTherm entries: 2312 Extra Details: additive : EDTA(1 mM), Ribonuclease T1; conformational stability; salt effects,thermal denaturation with inhibitor

Submission Details

ID: ZWnjpupt3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:18 p.m.

Version: 1

Publication Details
Oobatake M;Takahashi S;Ooi T,J. Biochem. (1979) Conformational stability of ribonuclease T1. I. Thermal denaturation and effects of salts. PMID:39067
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
1B2M 1998-11-27T00:00:00+0000 2.0 THREE-DIMENSIONAL STRUCTURE OF RIBONULCEASE T1 COMPLEXED WITH AN ISOSTERIC PHOSPHONATE ANALOGUE OF GPU: ALTERNATE SUBSTRATE BINDING MODES AND CATALYSIS.
1BIR 1996-01-04T00:00:00+0000 1.8 RIBONUCLEASE T1, PHE 100 TO ALA MUTANT COMPLEXED WITH 2' GMP
1BU4 1998-09-11T00:00:00+0000 1.9 RIBONUCLEASE 1 COMPLEX WITH 2'GMP
1BVI 1998-09-15T00:00:00+0000 1.9 RIBONUCLEASE T1 (WILDTYPE) COMPLEXED WITH 2'GMP
1CH0 1999-03-30T00:00:00+0000 2.3 RNASE T1 VARIANT WITH ALTERED GUANINE BINDING SEGMENT
1DET 1996-02-20T00:00:00+0000 1.8 RIBONUCLEASE T1 CARBOXYMETHYLATED AT GLU 58 IN COMPLEX WITH 2'GMP
1FYS 2000-10-03T00:00:00+0000 2.0 Ribonuclease T1 V16C mutant
1FZU 2000-10-04T00:00:00+0000 1.8 RNAse T1 V78A mutant
1G02 2000-10-05T00:00:00+0000 1.86 Ribonuclease T1 V16S mutant
1GSP 1997-11-28T00:00:00+0000 2.2 RIBONUCLEASE T1 COMPLEXED WITH 2',3'-CGPS, 1 DAY

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Guanyl-specific ribonuclease T1 P00651 RNT1_ASPOR