Folding pathway of FKBP12 and characterisation of the transition state.


Abstract

The folding pathway of human FKBP12, a 12 kDa FK506-binding protein (immunophilin), has been characterised. Unfolding and refolding rate constants have been determined over a wide range of denaturant concentrations and data are shown to fit to a two-state model of folding in which only the denatured and native states are significantly populated, even in the absence of denaturant. This simple model for folding, in which no intermediate states are significantly populated, is further supported from stopped-flow circular dichroism experiments in which no fast "burst" phases are observed. FKBP12, with 107 residues, is the largest protein to date which folds with simple two-state kinetics in water (kF=4 s(-1)at 25 degrees C). The topological crossing of two loops in FKBP12, a structural element suggested to cause kinetic traps during folding, seems to have little effect on the folding pathway. The transition state for folding has been characterised by a series of experiments on wild-type FKBP12. Information on the thermodynamic nature of, the solvent accessibility of, and secondary structure in, the transition state was obtained from experiments measuring the unfolding and refolding rate constants as a function of temperature, denaturant concentration and trifluoroethanol concentration. In addition, unfolding and refolding studies in the presence of ligand provided information on the structure of the ligand-binding pocket in the transition state. The data suggest a compact transition state relative to the unfolded state with some 70 % of the surface area buried. The ligand-binding site, which is formed mainly by two loops, is largely unstructured in the transition state. The trifluoroethanol experiments suggest that the alpha-helix may be formed in the transition state. These results are compared with results from protein engineering studies and molecular dynamics simulations (see the accompanying paper). Study holds ProTherm entries: 6251, 6252, 6253, 6254, 6255, 6256, 6257 Extra Details: immunophilin; FKBP12; protein folding;,transition state; two-state folding

Submission Details

ID: XuBXkM974

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:31 p.m.

Version: 1

Publication Details
Main ER;Fulton KF;Jackson SE,J. Mol. Biol. (1999) Folding pathway of FKBP12 and characterisation of the transition state. PMID:10438630
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
1FKK 1995-08-18T00:00:00+0000 2.2 ATOMIC STRUCTURE OF FKBP12, AN IMMUNOPHILIN BINDING PROTEIN
1FKL 1995-08-18T00:00:00+0000 1.7 ATOMIC STRUCTURE OF FKBP12-RAPAYMYCIN, AN IMMUNOPHILIN-IMMUNOSUPPRESSANT COMPLEX
1TCO 1996-08-21T00:00:00+0000 2.5 TERNARY COMPLEX OF A CALCINEURIN A FRAGMENT, CALCINEURIN B, FKBP12 AND THE IMMUNOSUPPRESSANT DRUG FK506 (TACROLIMUS)
3J8H 2014-10-26T00:00:00+0000 3.8 Structure of the rabbit ryanodine receptor RyR1 in complex with FKBP12 at 3.8 Angstrom resolution
5GKY 2016-07-07T00:00:00+0000 3.8 Structure of RyR1 in a closed state (C1 conformer)
5GKZ 2016-07-07T00:00:00+0000 4.0 Structure of RyR1 in a closed state (C3 conformer)
5GL0 2016-07-07T00:00:00+0000 4.2 Structure of RyR1 in a closed state (C4 conformer)
5GL1 2016-07-07T00:00:00+0000 5.7 Structure of RyR1 in an open state
1A7X 1998-03-18T00:00:00+0000 2.0 FKBP12-FK1012 COMPLEX
1B6C 1999-01-13T00:00:00+0000 2.6 CRYSTAL STRUCTURE OF THE CYTOPLASMIC DOMAIN OF THE TYPE I TGF-BETA RECEPTOR IN COMPLEX WITH FKBP12

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Peptidyl-prolyl cis-trans isomerase FKBP1A P62942 FKB1A_HUMAN
100.0 Peptidyl-prolyl cis-trans isomerase FKBP1A P62943 FKB1A_RABIT
97.2 Peptidyl-prolyl cis-trans isomerase FKBP1A P18203 FKB1A_BOVIN
97.2 Peptidyl-prolyl cis-trans isomerase FKBP1A P26883 FKB1A_MOUSE
97.2 Peptidyl-prolyl cis-trans isomerase FKBP1A Q62658 FKB1A_RAT