Effect of single amino acid replacements on the folding and stability of dihydrofolate reductase from Escherichia coli.


Abstract

The role of the secondary structure in the folding mechanism of dihydrofolate reductase from Escherichia coli was probed by studying the effects of amino acid replacements in two alpha helices and two strands of the central beta sheet on the folding and stability. The effects on stability could be qualitatively understood in terms of the X-ray structure for the wild-type protein by invoking electrostatic, hydrophobic, or hydrogen-bonding interactions. Kinetic studies focused on the two slow reactions that are thought to reflect the unfolding/refolding of two stable native conformers to/from their respective folding intermediates [Touchette, N. A., Perry, K. M., & Matthews, C. R. (1986) Biochemistry 25, 5445-5452]. Replacements at three different positions in helix alpha B selectively alter the relaxation time for unfolding while a single replacement in helix alpha C selectively alters the relaxation time for refolding. This behavior is characteristic of mutations that change the stability of the protein but do not affect the rate-limiting step. In striking contrast, replacements in strands beta F and beta G can affect both unfolding and refolding relaxation times. This behavior shows that these mutations alter the rate-limiting step in these native-to-intermediate folding reactions. It is proposed that the intermediates have an incorrectly formed beta sheet whose maturation to the structure found in the native conformation is one of the slow steps in folding. Study holds ProTherm entries: 401, 402, 403, 404, 405, 406, 407 Extra Details: additive : K2EDTA(0.2 mM),

Submission Details

ID: WZPxXvuT3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:15 p.m.

Version: 1

Publication Details
Perry KM;Onuffer JJ;Touchette NA;Herndon CS;Gittelman MS;Matthews CR;Chen JT;Mayer RJ;Taira K;Benkovic SJ,Biochemistry (1987) Effect of single amino acid replacements on the folding and stability of dihydrofolate reductase from Escherichia coli. PMID:3300767
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
6CW7 2018-03-30T00:00:00+0000 1.03 E. coli DHFR product complex with (6S)-5,6,7,8-TETRAHYDROFOLATE
6CXK 2018-04-03T00:00:00+0000 1.11 E. coli DHFR substrate complex with Dihydrofolate
6CYV 2018-04-06T00:00:00+0000 1.3 E. coli DHFR ternary complex with NADP and dihydrofolate
1DDR 1995-06-29T00:00:00+0000 2.45 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE AND UREA
1DDS 1995-06-29T00:00:00+0000 2.2 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE
1DHI 1993-10-29T00:00:00+0000 1.9 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DHJ 1993-10-29T00:00:00+0000 1.8 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DRA 1991-11-06T00:00:00+0000 1.9 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRB 1991-11-06T00:00:00+0000 1.96 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRE 1996-11-28T00:00:00+0000 2.6 DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
91.8 Dihydrofolate reductase P31074 DYR_KLEAE
96.2 Dihydrofolate reductase P31073 DYR_CITFR
100.0 Dihydrofolate reductase P0ABQ6 DYR_SHIFL
100.0 Dihydrofolate reductase P0ABQ4 DYR_ECOLI
100.0 Dihydrofolate reductase P0ABQ5 DYR_ECOL6