Testing the relationship between foldability and the early folding events of dihydrofolate reductase from Escherichia coli.


Abstract

A "folding element" is a contiguous peptide segment crucial for a protein to be foldable and is a new concept that could assist in our understanding of the protein-folding problem. It is known that the presence of the complete set of folding elements of dihydrofolate reductase (DHFR) from Escherichia coli is essential for the protein to be foldable. Since almost all of the amino acid residues known to be involved in the early folding events of DHFR are located within the folding elements, a close relationship between the folding elements and early folding events is hypothesized. In order to test this hypothesis, we have investigated whether or not the early folding events are preserved in circular permutants and topological mutants of DHFR, in which the order of the folding elements is changed but the complete set of folding elements is present. The stopped-flow circular dichroism (CD) measurements show that the CD spectra at the early stages of folding are similar among the mutants and the wild-type DHFR, indicating that the presence of the complete set of folding elements is sufficient to preserve the early folding events. We have further examined whether or not sequence perturbation on the folding elements by a single amino acid substitution affects the early folding events of DHFR. The results show that the amino acid substitutions inside of the folding elements can affect the burst-phase CD spectra, whereas the substitutions outside do not. Taken together, these results indicate that the above hypothesis is true, suggesting a close relationship between the foldability of a protein and the early folding events. We propose that the folding elements interact with each other and coalesce to form a productive intermediate(s) early in the folding, and these early folding events are important for a protein to be foldable. Study holds ProTherm entries: 14392, 14393, 14394, 14395, 14396, 14397, 14398, 14399, 14400, 14401, 14402, 14403, 14404, 14405 Extra Details: 0.2 mM EDTA and 1 mM 2-mercaptoethanol were added in the experiment.,1RX4 was used as pdb code for this entry as mentioned by authors. protein folding; dihydrofolate reductase; folding elements;,foldability; circular permutations

Submission Details

ID: VmHCP48L

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:45 p.m.

Version: 1

Publication Details
Arai M;Maki K;Takahashi H;Iwakura M,J. Mol. Biol. (2003) Testing the relationship between foldability and the early folding events of dihydrofolate reductase from Escherichia coli. PMID:12684013
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
6CW7 2018-03-30T00:00:00+0000 1.03 E. coli DHFR product complex with (6S)-5,6,7,8-TETRAHYDROFOLATE
6CXK 2018-04-03T00:00:00+0000 1.11 E. coli DHFR substrate complex with Dihydrofolate
6CYV 2018-04-06T00:00:00+0000 1.3 E. coli DHFR ternary complex with NADP and dihydrofolate
1DDR 1995-06-29T00:00:00+0000 2.45 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE AND UREA
1DDS 1995-06-29T00:00:00+0000 2.2 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE
1DHI 1993-10-29T00:00:00+0000 1.9 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DHJ 1993-10-29T00:00:00+0000 1.8 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DRA 1991-11-06T00:00:00+0000 1.9 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRB 1991-11-06T00:00:00+0000 1.96 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRE 1996-11-28T00:00:00+0000 2.6 DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Dihydrofolate reductase P0ABQ5 DYR_ECOL6
100.0 Dihydrofolate reductase P0ABQ4 DYR_ECOLI
100.0 Dihydrofolate reductase P0ABQ6 DYR_SHIFL
96.2 Dihydrofolate reductase P31073 DYR_CITFR
91.8 Dihydrofolate reductase P31074 DYR_KLEAE