Effect of proline mutations on the stability and kinetics of folding of staphylococcal nuclease.


The role of proline in the stability and kinetics of folding of wild-type staphylococcal nuclease and its P117G, P117T, and P31A mutants was examined as a function of guanidinium thiocyanate (Gdn-SCN) concentration. Replacement of Pro-117 with Gly or Thr caused small increases in stability, whereas substitution of Pro-31 by Ala led to a small decrease in stability. The slopes of the plots of delta G against denaturant concentration (m) for the mutant proteins are significantly smaller than for the wild-type, suggesting a decrease in the solvent-accessible surface area of the denatured state relative to that of the wild-type. The rates of unfolding and refolding were monitored using tryptophan fluorescence. The kinetic traces for refolding in the presence of Gdn-SCN were triphasic for the wild-type protein and P31A but biphasic for P117G and P117T mutants. The slower phases were typically 10% of the total amplitude except in the transition region. The rates of the fastest and medium phases of the wild-type were essentially unaffected by the mutations. Double-jump experiments in which the protein was unfolded in a high concentration of denaturant for a short time period and then refolded to final Gdn-SCN concentrations near the Cm revealed a fast increase in fluorescence emission corresponding to formation of the native state, followed by a slower decrease with an amplitude that varied with the guanidine concentration and time of unfolding.(ABSTRACT TRUNCATED AT 250 WORDS) Study holds ProTherm entries: 302, 303, 304, 305 Extra Details: staphylococcal nuclease; kinetics of folding; proline mutations;,solvent-accessible surface area; stability

Submission Details


Submitter: Connie Wang

Submission Date: April 24, 2018, 8:15 p.m.

Version: 1

Publication Details
Nakano T;Antonino LC;Fox RO;Fink AL,Biochemistry (1993) Effect of proline mutations on the stability and kinetics of folding of staphylococcal nuclease. PMID:8448112
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Thermonuclease P00644 NUC_STAAU
99.3 Thermonuclease Q5HHM4 NUC_STAAC
99.1 Thermonuclease Q99VJ0 NUC_STAAM
99.1 Thermonuclease Q7A6P2 NUC_STAAN
99.3 Thermonuclease Q6GB41 NUC_STAAS
99.3 Thermonuclease Q8NXI6 NUC_STAAW
99.3 Thermonuclease Q6GIK1 NUC_STAAR