Effect of proline mutations on the stability and kinetics of folding of staphylococcal nuclease.


Abstract

The role of proline in the stability and kinetics of folding of wild-type staphylococcal nuclease and its P117G, P117T, and P31A mutants was examined as a function of guanidinium thiocyanate (Gdn-SCN) concentration. Replacement of Pro-117 with Gly or Thr caused small increases in stability, whereas substitution of Pro-31 by Ala led to a small decrease in stability. The slopes of the plots of delta G against denaturant concentration (m) for the mutant proteins are significantly smaller than for the wild-type, suggesting a decrease in the solvent-accessible surface area of the denatured state relative to that of the wild-type. The rates of unfolding and refolding were monitored using tryptophan fluorescence. The kinetic traces for refolding in the presence of Gdn-SCN were triphasic for the wild-type protein and P31A but biphasic for P117G and P117T mutants. The slower phases were typically 10% of the total amplitude except in the transition region. The rates of the fastest and medium phases of the wild-type were essentially unaffected by the mutations. Double-jump experiments in which the protein was unfolded in a high concentration of denaturant for a short time period and then refolded to final Gdn-SCN concentrations near the Cm revealed a fast increase in fluorescence emission corresponding to formation of the native state, followed by a slower decrease with an amplitude that varied with the guanidine concentration and time of unfolding.(ABSTRACT TRUNCATED AT 250 WORDS) Study holds ProTherm entries: 302, 303, 304, 305 Extra Details: staphylococcal nuclease; kinetics of folding; proline mutations;,solvent-accessible surface area; stability

Submission Details

ID: UvCdrBVJ3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:15 p.m.

Version: 1

Publication Details
Nakano T;Antonino LC;Fox RO;Fink AL,Biochemistry (1993) Effect of proline mutations on the stability and kinetics of folding of staphylococcal nuclease. PMID:8448112
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
4WRD 2014-10-23T00:00:00+0000 1.65 Crystal structure of Staphylcoccal nulease variant Delta+PHS V66E L125E at cryogenic temperature
3QOL 2011-02-10T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant D+PHS/V23E at pH 6 determined at 100 K
3QOJ 2011-02-10T00:00:00+0000 1.6 Cryogenic structure of Staphylococcal nuclease variant D+PHS/V23K
3R3O 2011-03-16T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS T62A at cryogenic temperature and with high redundancy
3MVV 2010-05-04T00:00:00+0000 1.72 Crystal structure of Staphylococcal nuclease variant Delta+PHS F34A at cryogenic temperature
2OXP 2007-02-20T00:00:00+0000 2.0 Crystal Structure of Staphylococcal Nuclease mutant V66D/P117G/H124L/S128A
2LKV 2011-10-21T00:00:00+0000 0 Staphylococcal Nuclease PHS variant
3D4W 2008-05-15T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS A109R at cryogenic temperature
2M00 2012-10-14T00:00:00+0000 0 Solution structure of staphylococcal nuclease E43S mutant in the presence of ssDNA and Cd2+
3D8G 2008-05-23T00:00:00+0000 1.99 Crystal structure of Staphylococcal nuclease variant Delta+PHS I72R at cryogenic temperature

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
99.3 Thermonuclease Q6GIK1 NUC_STAAR
99.3 Thermonuclease Q8NXI6 NUC_STAAW
99.3 Thermonuclease Q6GB41 NUC_STAAS
99.1 Thermonuclease Q7A6P2 NUC_STAAN
99.1 Thermonuclease Q99VJ0 NUC_STAAM
99.3 Thermonuclease Q5HHM4 NUC_STAAC
100.0 Thermonuclease P00644 NUC_STAAU