The energetics of T4 lysozyme reveal a hierarchy of conformations.


Abstract

We have used native state exchange to examine the energy landscape of the well-characterized protein T4 lysozyme. Although the protein exhibits two-state behavior by traditional probes, the energy landscape determined here is much more complex. The average stability of the C-terminal subdomain is significantly higher than that for the N-terminus suggesting at least two regions of unfolding. At a more detailed level, there appears to be a broad continuum of stabilities throughout each region. The overall subdomain hierarchy of energies does not mirror data on the folding pathway for this protein, challenging the relationship between energy landscapes and folding trajectories. Study holds ProTherm entries: 6898, 6899, 6900, 6901, 6902, 6903, 6904, 6905, 6906, 6907, 6908, 6909, 6910, 6911, 6912, 6913, 6914, 6915, 6916, 6917, 6918, 6919, 6920, 6921, 6922, 6923, 6924, 6925, 6926, 6927, 6928, 6929, 6930, 6931, 6932, 6933, 6934, 6935, 6936, 6937, 6938, 6939, 6940, 6941, 6942, 6943, 6944, 6945, 6946, 6947, 6948, 6949, 6950, 6951, 6952, 6953, 6954, 6955, 6956, 6957, 6958, 6959, 6960, 6961, 6962, 6963, 6964, 6965, 6966, 6967, 6968, 6969, 6970, 6971, 6972, 6973, 6974, 6975, 6976, 6977, 6978, 6979, 6980, 6981, 6982 Extra Details: stability parameters of native state hydrogen exchange at,Phe 4 native state exchange; two-state behavior; folding pathway;,energy landscape

Submission Details

ID: Uq2qihMX

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:32 p.m.

Version: 1

Publication Details
LlinĂ¡s M;Gillespie B;Dahlquist FW;Marqusee S,Nat. Struct. Biol. (1999) The energetics of T4 lysozyme reveal a hierarchy of conformations. PMID:10542101
Additional Information

Sequence Assay Result Units