Long-range electrostatic interactions can influence the folding, stability, and cooperativity of dihydrofolate reductase.


Abstract

To test the possibility that long-range interactions might influence the folding and stability of dihydrofolate reductase, a series of single and double mutations at positions 28 and 139 were constructed and their urea-induced unfolding reactions studied by absorbance and circular dichroism spectroscopy. The alpha carbons of the two side chains are separated by 15 A in the native conformation. The replacement of Leu 28 by Arg and of Glu 139 by Gln resulted in additive effects on both kinetic and equilibrium properties of the reversible unfolding transition; no evidence for interaction was obtained. In contrast, the Arg 28/Lys 139 double replacement changed the equilibrium folding model from two state to multistate and showed evidence for interaction in one of the two kinetic phases detected in both unfolding and refolding reactions. The results can be explained in terms of a long-range, repulsive electrostatic interaction between the cationic side chains at these two positions. Study holds ProTherm entries: 4423, 4424, 4425, 4426, 4427 Extra Details: additive : K2EDTA(0.2 mM), long-range interactions; reversible unfolding transition;,equilibrium folding model; electrostatic

Submission Details

ID: U5XycmVN3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:25 p.m.

Version: 1

Publication Details
Perry KM;Onuffer JJ;Gittelman MS;Barmat L;Matthews CR,Biochemistry (1989) Long-range electrostatic interactions can influence the folding, stability, and cooperativity of dihydrofolate reductase. PMID:2692706
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
6CW7 2018-03-30T00:00:00+0000 1.03 E. coli DHFR product complex with (6S)-5,6,7,8-TETRAHYDROFOLATE
6CXK 2018-04-03T00:00:00+0000 1.11 E. coli DHFR substrate complex with Dihydrofolate
6CYV 2018-04-06T00:00:00+0000 1.3 E. coli DHFR ternary complex with NADP and dihydrofolate
1DDR 1995-06-29T00:00:00+0000 2.45 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE AND UREA
1DDS 1995-06-29T00:00:00+0000 2.2 MOLECULE: DIHYDROFOLATE REDUCTASE (E.C.1.5.1.3) COMPLEXED WITH METHOTREXATE
1DHI 1993-10-29T00:00:00+0000 1.9 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DHJ 1993-10-29T00:00:00+0000 1.8 LONG-RANGE STRUCTURAL EFFECTS IN A SECOND-SITE REVERTANT OF A MUTANT DIHYDROFOLATE REDUCTASE
1DRA 1991-11-06T00:00:00+0000 1.9 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRB 1991-11-06T00:00:00+0000 1.96 CRYSTAL STRUCTURE OF UNLIGANDED ESCHERICHIA COLI DIHYDROFOLATE REDUCTASE. LIGAND-INDUCED CONFORMATIONAL CHANGES AND COOPERATIVITY IN BINDING
1DRE 1996-11-28T00:00:00+0000 2.6 DIHYDROFOLATE REDUCTASE COMPLEXED WITH METHOTREXATE AND NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE (OXIDIZED FORM)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
91.8 Dihydrofolate reductase P31074 DYR_KLEAE
96.2 Dihydrofolate reductase P31073 DYR_CITFR
100.0 Dihydrofolate reductase P0ABQ6 DYR_SHIFL
100.0 Dihydrofolate reductase P0ABQ4 DYR_ECOLI
100.0 Dihydrofolate reductase P0ABQ5 DYR_ECOL6