A differential scanning calorimetric study of the thermal unfolding of mutant forms of phage T4 lysozyme.


Abstract

In continuation of our earlier work on the effects of amino acid replacements on the thermodynamics of the thermal unfolding of T4 lysozyme [Kitamura, S., & Sturtevant, J. M. (1989) Biochemistry 28, 3788-3792; Connelly, P., Ghosaini, L., Hu, C.-Q., Kitamura, S., Tanaka, A., & Sturtevant, J. M. (1991) Biochemistry 30, 1887-1891; Hu, C.-Q., Kitamura, S., Tanaka, A., & Sturtevant, J. M. (1992) Biochemistry 31, 1643-1647], we report here a study by differential scanning calorimetry of the effects of five replacements at Ile3. Four of these replacements, those with Glu, Phe, Pro, and Thr, caused apparent destabilizations, while the replacement by Leu led to a small apparent stabilization. The largest observed destabilization (Ile3Pro) amounted to -3.0 kcal mol-1 in free energy at pH 2.00 and 38.8 degrees C (the denaturational temperature of the wild-type protein at this pH), and the largest stabilization amounted to +1.2 kcal mol-1 at pH 3.00 and 53.6 degrees C. Study holds ProTherm entries: 1381, 1382, 1383, 1384, 1385, 1386, 1387, 1388, 1389, 1390, 1391, 1392, 1393, 1394, 1395, 1396, 1397, 1398, 13713, 13714, 13715, 13716, 13717, 13718, 13719, 13720, 13721, 13722, 13723, 13724, 13725, 13726, 13727 Extra Details: T4 lysozyme; thermal unfolding; isoleucine; free energy;,differential scanning calorimetry

Submission Details

ID: SnLE63JB4

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:17 p.m.

Version: 1

Publication Details
Ladbury JE;Hu CQ;Sturtevant JM,Biochemistry (1992) A differential scanning calorimetric study of the thermal unfolding of mutant forms of phage T4 lysozyme. PMID:1420185
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
102L 1992-09-29T00:00:00+0000 1.74 HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME
103L 1992-09-29T00:00:00+0000 1.9 HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME
104L 1992-09-29T00:00:00+0000 2.8 HOW AMINO-ACID INSERTIONS ARE ALLOWED IN AN ALPHA-HELIX OF T4 LYSOZYME
107L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
108L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
109L 1992-12-17T00:00:00+0000 1.85 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
110L 1992-12-17T00:00:00+0000 1.7 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
111L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
112L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME
113L 1992-12-17T00:00:00+0000 1.8 STRUCTURAL BASIS OF ALPHA-HELIX PROPENSITY AT TWO SITES IN T4 LYSOZYME

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Endolysin P00720 ENLYS_BPT4