Specificity of native-like interhelical hydrophobic contacts in the apomyoglobin intermediate.


Abstract

On exposure to mildly acidic conditions, apomyoglobin forms a partially folded intermediate, I. The A, B, G, and H helices are significantly structured in this equilibrium intermediate, whereas the remainder of the protein is largely unfolded. We report here the effects of mutations at helix pairing sites on the stability of I in three classes of mutants that: (i) truncate hydrophobic side chains in native helix packing sites, (ii) truncate hydrophobic side chains not involved in interhelical contacts, and (iii) extend hydrophobic side chains at residues not involved in interhelical contacts. Class I mutants significantly decrease the stability and cooperativity of folding of the intermediate. Class II and III mutants show smaller effects on stability and have little effect on cooperativity. Qualitatively similar results to those found in I were obtained for all three classes of mutants in native myoglobin (N), demonstrating that hydrophobic burial is fairly specific to native helix packing sites in I as well as in N. These results suggest that hydrophobic burial along native-like interhelical contacts is important for the formation of the cooperatively folded intermediate. Study holds ProTherm entries: 6503, 6504, 6505, 6506, 6507, 6508, 6509, 6510, 6511, 6512, 6513, 6514, 6515, 6516, 6517, 6518, 6519, 6520, 6521, 6522, 6523, 6524, 6525, 6526, 6527, 6528, 6529, 6530, 6531, 6532, 6533, 6534, 6535, 6536, 6537, 6538, 6539, 6540, 6541, 6542, 6543, 6544, 6545, 6546 Extra Details: partially folded intermediate state partially folded intermediate; helix packing sites;,hydrophobic side chains; helix pairing; hydrophobic burial

Submission Details

ID: Sdc4iSx9

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:32 p.m.

Version: 1

Publication Details
Kay MS;Ramos CH;Baldwin RL,Proc. Natl. Acad. Sci. U.S.A. (1999) Specificity of native-like interhelical hydrophobic contacts in the apomyoglobin intermediate. PMID:10051585
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Myoglobin P02185 MYG_PHYMC
96.8 Myoglobin Q0KIY5 MYG_KOGBR
96.8 Myoglobin P02184 MYG_KOGSI
92.9 Myoglobin Q0KIY1 MYG_BALBO
92.9 Myoglobin Q0KIY2 MYG_BALED
92.9 Myoglobin P02177 MYG_ESCRO
92.2 Myoglobin P02178 MYG_MEGNO
91.4 Myoglobin Q0KIY3 MYG_PENEL
91.4 Myoglobin P02181 MYG_INIGE
92.1 Myoglobin P02174 MYG_GLOME
90.9 Myoglobin P02179 MYG_BALAC
91.4 Myoglobin P02173 MYG_ORCOR
90.8 Myoglobin Q0KIY7 MYG1_STEAT
90.8 Myoglobin P68276 MYG_DELDE
90.8 Myoglobin P68279 MYG_TURTR
90.8 Myoglobin P68277 MYG_PHODA
90.8 Myoglobin P68278 MYG_PHOPH
90.3 Myoglobin P02180 MYG_BALPH
90.1 Myoglobin P02183 MYG_MESCA
90.1 Myoglobin Q0KIY0 MYG_MESST
90.1 Myoglobin P02182 MYG_ZIPCA