How Ala-->Gly mutations in different helices affect the stability of the apomyoglobin molten globule.


Abstract

The apomyoglobin molten globule has a complex, partly folded structure with a folded A[B]GH subdomain; the factors determining its stability are not yet known in detail. Ala-->Gly mutations, made at solvent-exposed positions, are used to probe the role of helix propensity of individual helices in stabilizing the molten globule. Molten globule stability is measured by reversible urea unfolding, monitored both by circular dichroism and by tryptophan fluorescence. Two-state unfolding is tested by superposition of these two unfolding curves, and stability data are reported only for variants which satisfy the superposition test. Results for sites Q8 in the A helix and E109 in the G helix confirm that the helix propensities of the A and G helices both strongly affect molten globule stability, in contrast to results for the G65A/G73A double mutant which show that changing the helix propensity of the E-helix sequence has no significant stabilizing effect. Changing the helix propensity of the B-helix sequence with the G23A/G25A double mutant affects molten globule stability to an intermediate extent, confirming an earlier report that this mutant has increased stability. These results are consistent with the bipartite structure for the molten globule in which the A, G, and H helices are stably folded, while the long E helix is unfolded and the B helix has intermediate stability. Some differences are found in the shapes of the unfolding curves of different mutants even though they satisfy the superposition test for two-state unfolding, and possible explanations are discussed. Study holds ProTherm entries: 11133, 11134, 11135, 11136, 11137, 11138, 11139, 11140, 11141, 11142, 11143, 11144, 11145, 11146, 11147, 11148, 11149, 11150, 11151, 11152, 11153, 11154, 11155, 11156, 11157, 11158, 11159, 11160 Extra Details: partly folded structure; solvent-exposed positions; helix propensity;,intermediate stability

Submission Details

ID: RWyXkjcG

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:41 p.m.

Version: 1

Publication Details
Luo Y;Baldwin RL,Biochemistry (2001) How Ala-->Gly mutations in different helices affect the stability of the apomyoglobin molten globule. PMID:11318652
Additional Information

Sequence Assay Result Units