Protein stability in ice.


Abstract

This study presents an experimental approach, based on the change of Trp fluorescence between native and denatured states of proteins, which permits to monitor unfolding equilibria and the thermodynamic stability (DeltaG degrees ) of these macromolecules in frozen aqueous solutions. The results obtained by guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, in the temperature range from -8 to -16 degrees C, demonstrate that the stability of the native fold may be significantly perturbed in ice depending mainly on the size of the liquid water pool (V(L)) in equilibrium with the solid phase. The data establish a threshold, around V(L)=1.5%, below which in ice DeltaG degrees decreases progressively relative to liquid state, up to 3 kcal/mole for V(L)=0.285%. The sharp dependence of DeltaG degrees on V(L) is consistent with a mechanism based on adsorption of the protein to the ice surface. The reduction in DeltaG degrees is accompanied by a corresponding decrease in m-value indicating that protein-ice interactions increase the solvent accessible surface area of the native fold or reduce that of the denatured state, or both. The method opens the possibility for examining in a more quantitative fashion the influence of various experimental conditions on the ice perturbation and in particular to test the effectiveness of numerous additives used in formulations to preserve labile pharmaco proteins. Study holds ProTherm entries: 23590, 23591, 23592, 23593, 23594, 23595, 23596, 23597, 23598, 23599, 23600, 23601, 23602, 23603 Extra Details: Ice, VL (size of liquid water shrinks) is 0.285% liquid water pool; adsorption; protein-ice interactions; solvent accessible surface area

Submission Details

ID: Nuj88HW93

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:54 p.m.

Version: 1

Publication Details
Strambini GB;Gonnelli M,Biophys. J. (2007) Protein stability in ice. PMID:17189314
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
1AG0 1997-03-26T00:00:00+0000 2.4 STRUCTURE OF CYS 112 ASP AZURIN FROM PSEUDOMONAS AERUGINOSA
1AZN 1994-05-27T00:00:00+0000 2.6 CRYSTAL STRUCTURE OF THE AZURIN MUTANT PHE114ALA FROM PSEUDOMONAS AERUGINOSA AT 2.6 ANGSTROMS RESOLUTION
1AZR 1993-03-04T00:00:00+0000 2.4 CRYSTAL STRUCTURE OF PSEUDOMONAS AERUGINOSA ZINC AZURIN MUTANT ASP47ASP AT 2.4 ANGSTROMS RESOLUTION
1AZU 1980-08-04T00:00:00+0000 2.7 STRUCTURAL FEATURES OF AZURIN AT 2.7 ANGSTROMS RESOLUTION
1BEX 1998-05-18T00:00:00+0000 2.3 STRUCTURE OF RUTHENIUM-MODIFIED PSEUDOMONAS AERUGINOSA AZURIN
1CC3 1999-03-03T00:00:00+0000 1.65 PURPLE CUA CENTER
1E5Y 2000-08-04T00:00:00+0000 2.0 Azurin from Pseudomonas aeruginosa, reduced form, pH 5.5
1E5Z 2000-08-04T00:00:00+0000 2.0 Azurin from Pseudomonas aeruginosa, reduced form, pH 9.0
1E65 2000-08-08T00:00:00+0000 1.85 Azurin from Pseudomonas aeruginosa, apo form
1E67 2000-08-09T00:00:00+0000 2.14 Zn-Azurin from Pseudomonas aeruginosa

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
99.2 Azurin B3EWN9 AZUR_PSEAI
100.0 Azurin P00282 AZUR_PSEAE