The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions.


Abstract

The nature of the rate-limiting transition state at zero denaturant (TS(1)) and whether there are hidden intermediates are the two major unsolved problems in defining the folding pathway of barnase. In earlier studies, it was shown that TS(1) has small phi values throughout the structure of the protein, suggesting that the transition state has either a defined partially folded secondary structure with all side chains significantly exposed or numerous different partially unfolded structures with similar stability. To distinguish the two possibilities, we studied the effect of Gly mutations on the folding rate of barnase to investigate the secondary structure formation in the transition state. Two mutations in the same region of a beta-strand decreased the folding rate by 20- and 50-fold, respectively, suggesting that the secondary structures in this region are dominantly formed in the rate-limiting transition state. We also performed native-state hydrogen exchange experiments on barnase at pD 5.0 and 25 degrees C and identified a partially unfolded state. The structure of the intermediate was investigated using protein engineering and NMR. The results suggest that the intermediate has an omega loop unfolded. This intermediate is more folded than the rate-limiting transition state previously characterized at high denaturant concentrations (TS(2)). Therefore, it exists after TS(2) in folding. Consistent with this conclusion, the intermediate folds with the same rate and denaturant dependence as the wild-type protein, but unfolds faster with less dependence on the denaturant concentration. These and other results in the literature suggest that barnase folds through partially unfolded intermediates that exist after the rate-limiting step. Such folding behavior is similar to those of cytochrome c and Rd-apocyt b(562). Together, we suggest that other small apparently two-state proteins may also fold through hidden intermediates. Study holds ProTherm entries: 16909, 16910, 16911, 16912, 16913, 16914, 16915, 16916, 16917, 16918, 16919, 16920, 16921, 16922, 16923, 16924, 16925, 16926, 16927, 16928, 16929, 16930, 16931, 16932, 16933, 16934, 16935, 16936, 16937, 16938, 16939, 16940 Extra Details: Pseudo-wild type (p-WT) of barnase, in which a surface residue in the active site H102 is mutated to Ala. dCp value 1.7 kcal/mol/deg used for calculation. folding pathway; transition state; secondary structure; hidden intermediates

Submission Details

ID: JsyeaYJB4

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:48 p.m.

Version: 1

Publication Details
Vu ND;Feng H;Bai Y,Biochemistry (2004) The folding pathway of barnase: the rate-limiting transition state and a hidden intermediate under native conditions. PMID:15035606
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Ribonuclease P00648 RNBR_BACAM
97.3 Ribonuclease P35078 RN_BACCI