Thermodynamic effects of reduction of the active-site disulfide of Escherichia coli thioredoxin explored by differential scanning calorimetry.


Abstract

Intramolecular disulfide bonds in protein molecules, whether present in the wild-type protein or engineered via site-directed mutagenesis, are capable of significantly increasing the stability. Establishing thermodynamic parameters associated with the redox formation of this linkage is often encumbered by other global structural changes within the protein molecule. The active site of Escherichia coli thioredoxin possesses a disulfide/dithiol in a short loop, oxidation/reduction of which is accompanied by little structural alteration of the protein. Data for the thermal denaturation of the reduced protein are presented, which on comparison to the data obtained for the oxidized form [Ladbury, J.E., Wynn, R., Hellinga, H.W., & Sturtevant, J.M. (1993) Biochemistry 32, 7526-7530] are used to establish thermodynamic parameters for the redox reaction in this molecule. Data for an isosteric double mutation in the active site of thioredoxin (Cys32Ser/Cys35Ser) are also presented. Although the wild-type and mutated proteins show a similar reduction in free energy compared to the oxidized form (-3.0 +/- 0.4 and -3.1 +/- 0.3 kcal mol-1, respectively), the enthalpic and entropic contributions to this destabilization are different for the two proteins. Study holds ProTherm entries: 4493, 4494, 4495, 4496, 4497 Extra Details: disulfide bonds; redox formation; global structural changes;,active site; enthalpic and entropic contributions

Submission Details

ID: JTSTruEE4

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:25 p.m.

Version: 1

Publication Details
Ladbury JE;Kishore N;Hellinga HW;Wynn R;Sturtevant JM,Biochemistry (1994) Thermodynamic effects of reduction of the active-site disulfide of Escherichia coli thioredoxin explored by differential scanning calorimetry. PMID:8142367
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
3DXB 2008-07-24T00:00:00+0000 2.2 Structure of the UHM domain of Puf60 fused to thioredoxin
5E4W 2015-10-07T00:00:00+0000 2.8 Crystal structure of cpSRP43 chromodomains 2 and 3 in complex with the Alb3 tail
5IKN 2016-03-03T00:00:00+0000 4.8 Crystal Structure of the T7 Replisome in the Absence of DNA
1F6M 2000-06-22T00:00:00+0000 2.95 CRYSTAL STRUCTURE OF A COMPLEX BETWEEN THIOREDOXIN REDUCTASE, THIOREDOXIN, AND THE NADP+ ANALOG, AADP+
1KEB 2001-11-15T00:00:00+0000 1.8 Crystal Structure of Double Mutant M37L,P40S E.coli Thioredoxin
1M7T 2002-07-22T00:00:00+0000 0 Solution Structure and Dynamics of the Human-Escherichia coli Thioredoxin Chimera: Insights into Thermodynamic Stability
1OAZ 2003-01-21T00:00:00+0000 2.78 IgE Fv SPE7 complexed with a recombinant thioredoxin
1SKR 2004-03-05T00:00:00+0000 2.4 T7 DNA Polymerase Complexed To DNA Primer/Template and ddATP
1SKS 2004-03-05T00:00:00+0000 2.3 Binary 3' complex of T7 DNA polymerase with a DNA primer/template containing a cis-syn thymine dimer on the template
1SKW 2004-03-05T00:00:00+0000 2.3 Binary 3' complex of T7 DNA polymerase with a DNA primer/template containing a disordered cis-syn thymine dimer on the template

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Thioredoxin 1 P0AA30 THIO_SHIFL
100.0 Thioredoxin 1 P0AA28 THIO_SALTY
100.0 Thioredoxin 1 P0AA29 THIO_SALTI
100.0 Thioredoxin 1 P0AA25 THIO_ECOLI
100.0 Thioredoxin 1 P0AA26 THIO_ECOL6
100.0 Thioredoxin 1 P0AA27 THIO_ECO57