Effect of alkylation with different sized substituents on thermal stability of lysozyme.


Abstract

The amino groups of hen egg white lysozyme were reductively alkylated by the reaction with aliphatic aldehydes of various chain lengths and with two aldehydes of different steric hindrance at pH 7.5 and 4 degrees for 3 h. About four of the original six lysine residues were modified by the reaction with acetaldehyde, n-butylaldehyde or n-hexylaldehyde. About three lysine residues were 2,2-dimethylpropylated with trimethylacetaldehyde while a single residue was modified with benzaldehyde. The thermal stabilities of these alkylated lysozymes were investigated by differential scanning calorimetry (DSC) at different acidic pH values. Alkylation thermally destabilized the proteins, depending not only on the extent of modification but also on the size of the substituent. The alkylated derivatives were 8-19 kJ/mol less stable than native lysozyme at 25 degrees and pH 3.0. The temperature dependences of the activities of the alkylated lysozymes against ethylene glycol chitin indicated that the orders of the optimum temperatures and the maximum activities were exactly the same as the order of the thermal stabilities. Study holds ProTherm entries: 12340, 12341 Extra Details: alkylation; chemical modification; denaturation; DSC; lysozyme; thermal stability

Submission Details

ID: HbJce8qD

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:43 p.m.

Version: 1

Publication Details
Fujita Y;Noda Y,Int. J. Pept. Protein Res. (1992) Effect of alkylation with different sized substituents on thermal stability of lysozyme. PMID:1446966
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
2IHL 1993-06-29T00:00:00+0000 1.4 LYSOZYME (E.C.3.2.1.17) (JAPANESE QUAIL)
1FBI 1995-01-19T00:00:00+0000 3.0 CRYSTAL STRUCTURE OF A CROSS-REACTION COMPLEX BETWEEN FAB F9.13.7 AND GUINEA-FOWL LYSOZYME
1GHL 1993-05-04T00:00:00+0000 2.1 THE THREE-DIMENSIONAL STRUCTURE OF PHEASANT AND GUINEA-FOWL EGG LYSOZYMES
1HHL 1993-05-04T00:00:00+0000 1.9 THE THREE-DIMENSIONAL STRUCTURE OF PHEASANT AND GUINEA-FOWL EGG LYSOZYMES
1JHL 1993-05-04T00:00:00+0000 2.4 THREE-DIMENSIONAL STRUCTURE OF A HETEROCLITIC ANTIGEN-ANTIBODY CROSS-REACTION COMPLEX
1BQL 1995-02-03T00:00:00+0000 2.6 STRUCTURE OF AN ANTI-HEL FAB FRAGMENT COMPLEXED WITH BOBWHITE QUAIL LYSOZYME
1DKJ 1996-01-10T00:00:00+0000 2.0 BOBWHITE QUAIL LYSOZYME
1DKK 1996-01-10T00:00:00+0000 1.9 BOBWHITE QUAIL LYSOZYME WITH NITRATE
135L 1993-06-10T00:00:00+0000 1.3 X-RAY STRUCTURE OF MONOCLINIC TURKEY EGG LYSOZYME AT 1.3 ANGSTROMS RESOLUTION
1DZB 2000-02-23T00:00:00+0000 2.0 Crystal structure of phage library-derived single-chain Fv fragment 1F9 in complex with turkey egg-white lysozyme

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
92.3 Lysozyme C P49663 LYSC_PHAVE
93.0 Lysozyme C P81711 LYSC_SYRSO
93.2 Lysozyme C P00702 LYSC_PHACO
94.6 Lysozyme C P24533 LYSC_SYRRE
93.0 Lysozyme C P24364 LYSC_LOPLE
92.2 Lysozyme C P00704 LYSC_NUMME
95.2 Lysozyme C P00703 LYSC_MELGA
95.3 Lysozyme C Q7LZT2 LYSC_TRATE
95.3 Lysozyme C P22910 LYSC_CHRAM
96.1 Lysozyme C P19849 LYSC_PAVCR
95.3 Lysozyme C P00701 LYSC_COTJA
96.1 Lysozyme C Q7LZI3 LYSC_TRASA
96.9 Lysozyme C Q7LZP9 LYSC_LOPIM
96.9 Lysozyme C Q7LZQ0 LYSC_CATWA
96.9 Lysozyme C P00699 LYSC_CALCC
96.9 Lysozyme C P00700 LYSC_COLVI
100.0 Lysozyme C P00698 LYSC_CHICK