Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease.


Abstract

A total of fifty single site surface phenylalanine substitution mutants have been made in the model protein staphylococcal nuclease. The fifty residues that were replaced with phenylalanine were chosen to give a broad sampling of solvent accessibility, secondary structure, and backbone conformations. The change in the stability of each mutant protein relative to wild type was measured by guanidine hydrochloride denaturation. These results were compared to previous results obtained when these same sites were substituted with an alanine and a glycine. By this means, changes in the stability due to the loss of interactions of the wild-type side chain can be separated from the effects of introducing the bulky, hydrophobic phenylalanine in these solvent-exposed positions. In general, our results agree with the conventional wisdom that placing a hydrophobic residue in a solvent-exposed position is destabilizing in most cases, but less destabilizing than most changes in the hydrophobic core of the protein. However, the degree to which a hydrophobic surface substitution destabilizes or stabilizes a globular protein is highly context-dependent, with some mutations being as destabilizing as those in the core. This indicates that steric and packing considerations are also important on the surface of a globular protein but generally are not as important as in the interior. No evidence for the widespread occurrence of the so-called reverse hydrophobic effect at solvent-exposed sites was found. In addition, this survey of numerous sites suggests that previous measurements of alpha-helix "propensities" often seriously underestimate the importance of the environment of the side chain. Study holds ProTherm entries: 3116, 3117, 3118, 3119, 3120, 3121, 3122, 3123, 3124, 3125, 3126, 3127, 3128, 3129, 3130, 3131, 3132, 3133, 3134, 3135, 3136, 3137, 3138, 3139, 3140, 3141, 3142, 3143, 3144, 3145, 3146, 3147, 3148, 3149, 3150, 3151, 3152, 3153, 3154, 3155, 3156, 3157, 3158, 3159, 3160, 3161, 3162, 3163, 3164, 3165, 3166 Extra Details: m value is relative to wild type value of 6.6 kcal/(mol M)

Submission Details

ID: GXbBLcsX3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:21 p.m.

Version: 1

Publication Details
Schwehm JM;Kristyanne ES;Biggers CC;Stites WE,Biochemistry (1998) Stability effects of increasing the hydrophobicity of solvent-exposed side chains in staphylococcal nuclease. PMID:9578580
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
4WRD 2014-10-23T00:00:00+0000 1.65 Crystal structure of Staphylcoccal nulease variant Delta+PHS V66E L125E at cryogenic temperature
2LKV 2011-10-21T00:00:00+0000 0 Staphylococcal Nuclease PHS variant
2M00 2012-10-14T00:00:00+0000 0 Solution structure of staphylococcal nuclease E43S mutant in the presence of ssDNA and Cd2+
2OXP 2007-02-20T00:00:00+0000 2.0 Crystal Structure of Staphylococcal Nuclease mutant V66D/P117G/H124L/S128A
3D4W 2008-05-15T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS A109R at cryogenic temperature
3D8G 2008-05-23T00:00:00+0000 1.99 Crystal structure of Staphylococcal nuclease variant Delta+PHS I72R at cryogenic temperature
3MVV 2010-05-04T00:00:00+0000 1.72 Crystal structure of Staphylococcal nuclease variant Delta+PHS F34A at cryogenic temperature
3QOJ 2011-02-10T00:00:00+0000 1.6 Cryogenic structure of Staphylococcal nuclease variant D+PHS/V23K
3QOL 2011-02-10T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant D+PHS/V23E at pH 6 determined at 100 K
3R3O 2011-03-16T00:00:00+0000 1.9 Crystal structure of Staphylococcal nuclease variant Delta+PHS T62A at cryogenic temperature and with high redundancy

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
99.3 Thermonuclease Q6GIK1 NUC_STAAR
99.3 Thermonuclease Q8NXI6 NUC_STAAW
99.3 Thermonuclease Q6GB41 NUC_STAAS
99.1 Thermonuclease Q7A6P2 NUC_STAAN
99.1 Thermonuclease Q99VJ0 NUC_STAAM
99.3 Thermonuclease Q5HHM4 NUC_STAAC
100.0 Thermonuclease P00644 NUC_STAAU