Amino-acid substitutions at the fully exposed P1 site of bovine pancreatic trypsin inhibitor affect its stability.


Abstract

It is widely accepted that solvent-exposed sites in proteins play only a negligible role in determining protein energetics. In this paper we show that amino acid substitutions at the fully exposed Lys15 in bovine pancreatic trypsin inhibitor (BPTI) influenced the CD- and DSC-monitored stability: The T(den) difference between the least (P1 Trp) and the most stable (P1 His) mutant is 11.2 degrees C at pH 2.0. The DeltaH(den) versus T(den) plot for all the variants at three pH values (2.0, 2.5, 3.0) is linear (DeltaC(p,den) = 0.41 kcal* mole(-1) * K(-1); 1 cal = 4.18 J) leading to a DeltaG(den) difference of 2.1 kcal*mole(-1). Thermal denaturation of the variants monitored by CD signal at pH 2.0 in the presence of 6 M GdmCl again showed differences in their stability, albeit somewhat smaller (DeltaT(den) =7.1 degrees C). Selective reduction of the Cys14-Cys 38 disulfide bond, which is located in the vicinity of the P1 position did not eliminate the stability differences. A correlation analysis of the P1 stability with different properties of amino acids suggests that two mechanisms may be responsible for the observed stability differences: the reverse hydrophobic effect and amino acid propensities to occur in nonoptimal dihedral angles adopted by the P1 position. The former effect operates at the denatured state level and causes a drop in protein stability for hydrophobic side chains, due to their decreased exposure upon denaturation. The latter factor influences the native state energetics and results from intrinsic properties of amino acids in a way similar to those observed for secondary structure propensities. In conclusion, our results suggest that the protein-stability-derived secondary structure propensity scales should be taken with more caution. Study holds ProTherm entries: 10396, 10397, 10398, 10399, 10400, 10401, 10402, 10403, 10404, 10405, 10406, 10407, 10408, 10409, 10410, 10411, 10412, 10413, 10414, 10415, 10416, 10417, 10418, 10419, 10420, 10421, 10422, 10423, 10424, 10425, 10426, 10427, 10428, 10429, 10430, 10431, 10432, 10433, 10434, 10435, 10436, 10437, 10438, 10439, 10440, 10441, 10442, 10443, 10444, 10445, 10446, 10447, 10448, 10449, 10450, 10451, 10452, 10453, 10454, 10455, 10456, 10457, 10458, 10459, 10460, 10461, 10462, 10463, 10464, 10465, 10466, 10467, 10468, 10469, 10470, 10471, 10472, 10473, 10474, 10475, 10476, 10477, 10478, 10479, 10480, 10481, 10482, 10483, 10484, 10485, 10486, 10487, 10488, 10489, 10490, 10491, 10492, 10493, 10494, 10495, 10496, 10497, 10498, 10499 Extra Details: thermodynamic stability; solvent-exposed residue; reverse hydrophobic effect;,bovine pancreatic trypsin inhibitor

Submission Details

ID: DwwzwSaW

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:40 p.m.

Version: 1

Publication Details
Krowarsch D;Otlewski J,Protein Sci. (2001) Amino-acid substitutions at the fully exposed P1 site of bovine pancreatic trypsin inhibitor affect its stability. PMID:11274462
Additional Information

Study Summary

Number of data points 256
Proteins Pancreatic trypsin inhibitor ; Pancreatic trypsin inhibitor
Unique complexes 18
Assays/Quantities/Protocols Experimental Assay: Tm prot_conc:- ; Experimental Assay: dHvH prot_conc:- ; Experimental Assay: dG temp:89.0 C, pH:3.0, prot_conc:180 micro g/mL ; Experimental Assay: dG pH:2.5, prot_conc:150 micro g/mL, temp:83.0 C ; Experimental Assay: dG temp:89.0 C, prot_conc:300 micro g/mL, pH:3.0 ; Experimental Assay: dG prot_conc:270 micro g/mL, temp:81.0 C, pH:2.0 ; Experimental Assay: dG prot_conc:110 micro g/mL, temp:81.0 C, pH:2.0 ; Experimental Assay: dG pH:2.5, prot_conc:200 micro g/mL, temp:83.0 C ; Experimental Assay: dG temp:81.0 C, pH:2.0, prot_conc:230 micro g/mL ; Experimental Assay: dG temp:89.0 C, prot_conc:220 micro g/mL, pH:3.0 ; Experimental Assay: dG pH:2.5, prot_conc:280 micro g/mL, temp:83.0 C ; Experimental Assay: dG temp:81.0 C, pH:2.0, prot_conc:260 micro g/mL ; Experimental Assay: dG temp:81.0 C, pH:2.0, prot_conc:210 micro g/mL ; Experimental Assay: dG prot_conc:220 micro g/mL, pH:2.5, temp:83.0 C ; Experimental Assay: dG prot_conc:100 micro g/mL, temp:81.0 C, pH:2.0 ; Experimental Assay: dG temp:89.0 C, pH:3.0, prot_conc:250 micro g/mL ; Experimental Assay: dG pH:2.5, prot_conc:230 micro g/mL, temp:83.0 C ; Experimental Assay: dG temp:81.0 C, pH:2.0, prot_conc:250 micro g/mL ; Experimental Assay: dG temp:89.0 C, pH:3.0, prot_conc:90 micro g/mL ; Experimental Assay: dG prot_conc:60 micro g/mL, pH:2.5, temp:83.0 C ; Experimental Assay: dG temp:81.0 C, pH:2.0, prot_conc:130 micro g/mL ; Experimental Assay: dG temp:89.0 C, pH:3.0, prot_conc:140 micro g/mL ; Experimental Assay: dG prot_conc:180 micro g/mL, temp:81.0 C, pH:2.0 ; Experimental Assay: dG temp:89.0 C, prot_conc:60 micro g/mL, pH:3.0 ; Experimental Assay: dG prot_conc:50 micro g/mL, pH:2.5, temp:83.0 C ; Experimental Assay: dG temp:81.0 C, pH:2.0, prot_conc:80 micro g/mL ; Experimental Assay: dG pH:2.5, temp:83.0 C, prot_conc:130 micro g/mL ; Experimental Assay: dG prot_conc:300 micro g/mL, temp:81.0 C, pH:2.0 ; Experimental Assay: dG temp:89.0 C, pH:3.0, prot_conc:150 micro g/mL ; Experimental Assay: dG pH:2.5, prot_conc:90 micro g/mL, temp:83.0 C ; Experimental Assay: dG temp:89.0 C, prot_conc:120 micro g/mL, pH:3.0 ; Experimental Assay: dG pH:2.5, prot_conc:250 micro g/mL, temp:83.0 C ; Experimental Assay: dG temp:81.0 C, pH:2.0, prot_conc:140 micro g/mL ; Experimental Assay: dG prot_conc:120 micro g/mL, pH:2.5, temp:83.0 C ; Experimental Assay: dG prot_conc:200 micro g/mL, temp:81.0 C, pH:2.0 ; Experimental Assay: dCp pH:3.0, prot_conc:180 micro g/mL ; Experimental Assay: dHcal pH:3.0, prot_conc:180 micro g/mL ; Experimental Assay: Tm pH:3.0, prot_conc:180 micro g/mL ; Experimental Assay: dHvH pH:3.0, prot_conc:180 micro g/mL ; Experimental Assay: dCp pH:2.5, prot_conc:150 micro g/mL ; Experimental Assay: dHcal pH:2.5, prot_conc:150 micro g/mL ; Experimental Assay: Tm prot_conc:150 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:150 micro g/mL, pH:2.5 ; Experimental Assay: dCp prot_conc:300 micro g/mL, pH:3.0 ; Experimental Assay: dHcal prot_conc:300 micro g/mL, pH:3.0 ; Experimental Assay: Tm prot_conc:300 micro g/mL, pH:3.0 ; Experimental Assay: dHvH prot_conc:300 micro g/mL, pH:3.0 ; Experimental Assay: dCp prot_conc:270 micro g/mL, pH:2.0 ; Experimental Assay: dHcal prot_conc:270 micro g/mL, pH:2.0 ; Experimental Assay: Tm prot_conc:270 micro g/mL ; Experimental Assay: dHvH prot_conc:270 micro g/mL ; Experimental Assay: dCp prot_conc:110 micro g/mL, pH:2.0 ; Experimental Assay: dHcal prot_conc:110 micro g/mL, pH:2.0 ; Experimental Assay: Tm prot_conc:110 micro g/mL ; Experimental Assay: dHvH prot_conc:110 micro g/mL ; Experimental Assay: dCp pH:2.5, prot_conc:200 micro g/mL ; Experimental Assay: dHcal pH:2.5, prot_conc:200 micro g/mL ; Experimental Assay: Tm prot_conc:200 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:200 micro g/mL, pH:2.5 ; Experimental Assay: dCp pH:2.0, prot_conc:230 micro g/mL ; Experimental Assay: dHcal pH:2.0, prot_conc:230 micro g/mL ; Experimental Assay: Tm prot_conc:230 micro g/mL ; Experimental Assay: dHvH prot_conc:230 micro g/mL ; Experimental Assay: dCp prot_conc:220 micro g/mL, pH:3.0 ; Experimental Assay: dHcal prot_conc:220 micro g/mL, pH:3.0 ; Experimental Assay: Tm prot_conc:220 micro g/mL, pH:3.0 ; Experimental Assay: dHvH prot_conc:220 micro g/mL, pH:3.0 ; Experimental Assay: dCp pH:2.5, prot_conc:280 micro g/mL ; Experimental Assay: dHvH prot_conc:210 micro g/mL ; Experimental Assay: dCp prot_conc:220 micro g/mL, pH:2.5 ; Experimental Assay: dHcal prot_conc:220 micro g/mL, pH:2.5 ; Experimental Assay: Tm prot_conc:220 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:220 micro g/mL, pH:2.5 ; Experimental Assay: dCp prot_conc:100 micro g/mL, pH:2.0 ; Experimental Assay: dHcal prot_conc:100 micro g/mL, pH:2.0 ; Experimental Assay: Tm prot_conc:100 micro g/mL ; Experimental Assay: dHvH prot_conc:100 micro g/mL ; Experimental Assay: dCp pH:3.0, prot_conc:250 micro g/mL ; Experimental Assay: dHcal pH:3.0, prot_conc:250 micro g/mL ; Experimental Assay: Tm pH:3.0, prot_conc:250 micro g/mL ; Experimental Assay: dHvH pH:3.0, prot_conc:250 micro g/mL ; Experimental Assay: dCp pH:2.5, prot_conc:230 micro g/mL ; Experimental Assay: dHcal pH:2.5, prot_conc:230 micro g/mL ; Experimental Assay: Tm pH:2.5, prot_conc:230 micro g/mL ; Experimental Assay: dHvH pH:2.5, prot_conc:230 micro g/mL ; Experimental Assay: dCp pH:2.0, prot_conc:200 micro M ; Experimental Assay: dHcal pH:2.0, prot_conc:200 micro M ; Experimental Assay: Tm prot_conc:200 micro M ; Experimental Assay: dHvH prot_conc:200 micro M ; Experimental Assay: dCp prot_conc:250 micro g/mL, pH:2.0 ; Experimental Assay: dHcal prot_conc:250 micro g/mL, pH:2.0 ; Experimental Assay: Tm prot_conc:250 micro g/mL ; Experimental Assay: dHvH prot_conc:250 micro g/mL ; Experimental Assay: dCp pH:3.0, prot_conc:90 micro g/mL ; Experimental Assay: dHcal pH:3.0, prot_conc:90 micro g/mL ; Experimental Assay: Tm prot_conc:90 micro g/mL, pH:3.0 ; Experimental Assay: dHvH prot_conc:90 micro g/mL, pH:3.0 ; Experimental Assay: dCp prot_conc:60 micro g/mL, pH:2.5 ; Experimental Assay: dHcal prot_conc:60 micro g/mL, pH:2.5 ; Experimental Assay: Tm prot_conc:60 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:60 micro g/mL, pH:2.5 ; Experimental Assay: dCp pH:2.0, prot_conc:130 micro g/mL ; Experimental Assay: dHcal pH:2.0, prot_conc:130 micro g/mL ; Experimental Assay: Tm prot_conc:130 micro g/mL ; Experimental Assay: dHvH prot_conc:130 micro g/mL ; Experimental Assay: dCp pH:3.0, prot_conc:140 micro g/mL ; Experimental Assay: dHcal pH:3.0, prot_conc:140 micro g/mL ; Experimental Assay: Tm pH:3.0, prot_conc:140 micro g/mL ; Experimental Assay: dHvH pH:3.0, prot_conc:140 micro g/mL ; Experimental Assay: dCp prot_conc:180 micro g/mL, pH:2.0 ; Experimental Assay: dHcal prot_conc:180 micro g/mL, pH:2.0 ; Experimental Assay: Tm prot_conc:180 micro g/mL ; Experimental Assay: dHvH prot_conc:180 micro g/mL ; Experimental Assay: dCp prot_conc:60 micro g/mL, pH:3.0 ; Experimental Assay: dHcal prot_conc:60 micro g/mL, pH:3.0 ; Experimental Assay: Tm prot_conc:60 micro g/mL, pH:3.0 ; Experimental Assay: dHvH prot_conc:60 micro g/mL, pH:3.0 ; Experimental Assay: dCp prot_conc:50 micro g/mL, pH:2.5 ; Experimental Assay: dHcal prot_conc:50 micro g/mL, pH:2.5 ; Experimental Assay: Tm prot_conc:50 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:50 micro g/mL, pH:2.5 ; Experimental Assay: dCp pH:2.0, prot_conc:80 micro g/mL ; Experimental Assay: dHcal pH:2.5, prot_conc:280 micro g/mL ; Experimental Assay: Tm prot_conc:280 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:280 micro g/mL, pH:2.5 ; Experimental Assay: dCp pH:2.0, prot_conc:260 micro g/mL ; Experimental Assay: dHcal pH:2.0, prot_conc:260 micro g/mL ; Experimental Assay: Tm prot_conc:260 micro g/mL ; Experimental Assay: dHvH prot_conc:260 micro g/mL ; Experimental Assay: dCp pH:2.0, prot_conc:210 micro g/mL ; Experimental Assay: dHcal pH:2.0, prot_conc:210 micro g/mL ; Experimental Assay: Tm prot_conc:210 micro g/mL ; Experimental Assay: dHcal pH:2.0, prot_conc:80 micro g/mL ; Experimental Assay: Tm prot_conc:80 micro g/mL ; Experimental Assay: dHvH prot_conc:80 micro g/mL ; Experimental Assay: dCp pH:2.5, prot_conc:130 micro g/mL ; Experimental Assay: dHcal pH:2.5, prot_conc:130 micro g/mL ; Experimental Assay: Tm pH:2.5, prot_conc:130 micro g/mL ; Experimental Assay: dHvH pH:2.5, prot_conc:130 micro g/mL ; Experimental Assay: dCp prot_conc:300 micro g/mL, pH:2.0 ; Experimental Assay: dHcal prot_conc:300 micro g/mL, pH:2.0 ; Experimental Assay: Tm prot_conc:300 micro g/mL ; Experimental Assay: dHvH prot_conc:300 micro g/mL ; Experimental Assay: dCp pH:3.0, prot_conc:150 micro g/mL ; Experimental Assay: dHcal pH:3.0, prot_conc:150 micro g/mL ; Experimental Assay: Tm prot_conc:150 micro g/mL, pH:3.0 ; Experimental Assay: dHvH prot_conc:150 micro g/mL, pH:3.0 ; Experimental Assay: dCp pH:2.5, prot_conc:90 micro g/mL ; Experimental Assay: dHcal pH:2.5, prot_conc:90 micro g/mL ; Experimental Assay: Tm prot_conc:90 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:90 micro g/mL, pH:2.5 ; Experimental Assay: dCp prot_conc:120 micro g/mL, pH:3.0 ; Experimental Assay: dHcal prot_conc:120 micro g/mL, pH:3.0 ; Experimental Assay: Tm prot_conc:120 micro g/mL, pH:3.0 ; Experimental Assay: dHvH prot_conc:120 micro g/mL, pH:3.0 ; Experimental Assay: dCp pH:2.5, prot_conc:250 micro g/mL ; Experimental Assay: dHcal pH:2.5, prot_conc:250 micro g/mL ; Experimental Assay: Tm pH:2.5, prot_conc:250 micro g/mL ; Experimental Assay: dHvH pH:2.5, prot_conc:250 micro g/mL ; Experimental Assay: dCp pH:2.0, prot_conc:140 micro g/mL ; Experimental Assay: dHcal pH:2.0, prot_conc:140 micro g/mL ; Experimental Assay: Tm prot_conc:140 micro g/mL ; Experimental Assay: dHvH prot_conc:140 micro g/mL ; Experimental Assay: dCp prot_conc:120 micro g/mL, pH:2.5 ; Experimental Assay: dHcal prot_conc:120 micro g/mL, pH:2.5 ; Experimental Assay: Tm prot_conc:120 micro g/mL, pH:2.5 ; Experimental Assay: dHvH prot_conc:120 micro g/mL, pH:2.5 ; Experimental Assay: dCp prot_conc:200 micro g/mL, pH:2.0 ; Experimental Assay: dHcal pH:2.0, prot_conc:200 micro g/mL ; Experimental Assay: Tm prot_conc:200 micro g/mL ; Experimental Assay: dHvH prot_conc:200 micro g/mL
Libraries Mutations for sequence RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
1UUB 2004-01-29 Solution structure of a truncated bovine pancreatic trypsin inhibitor mutant, 3-58 BPTI (K15R, R17A, R42S)
1OA5 2003-08-28 The solution structure of bovine pancreatic trypsin inhibitor at high pressure
1JV9 2001-09-12 NMR Structure of BPTI Mutant G37A
1JV8 2001-09-12 NMR Structure of BPTI Mutant G37A
1PIT 1994-01-31 DETERMINATION OF A HIGH-QUALITY NUCLEAR MAGNETIC RESONANCE SOLUTION STRUCTURE OF THE BOVINE PANCREATIC TRYPSIN INHIBITOR AND COMPARISON WITH THREE CRYSTAL STRUCTURES
1OA6 2003-08-28 The solution structure of bovine pancreatic trypsin inhibitor at high pressure
1LD6 2002-09-11 STRUCTURE OF BPTI_8A MUTANT
1K09 2002-07-10 Solution structure of BetaCore, A Designed Water Soluble Four-Stranded Antiparallel b-sheet Protein
1LD5 2002-09-11 STRUCTURE OF BPTI MUTANT A16V
1UUA 2004-01-29 Solution structure of a truncated bovine pancreatic trypsin inhibitor, 3-58 BPTI.
3OTJ 2011-01-26 A Crystal Structure of Trypsin Complexed with BPTI (Bovine Pancreatic Trypsin Inhibitor) by X-ray/Neutron Joint Refinement
1G6X 2001-05-09 0.86 ULTRA HIGH RESOLUTION STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI) MUTANT WITH ALTERED BINDING LOOP SEQUENCE
5PTI 1984-10-29 1.0 STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR. RESULTS OF JOINT NEUTRON AND X-RAY REFINEMENT OF CRYSTAL FORM II
1K6U 2001-12-19 1.0 Crystal Structure of Cyclic Bovine Pancreatic Trypsin Inhibitor
2ZVX 2009-10-13 1.09 Structure of a BPTI-[5,55] variant containing Gly/Val at the 14/38th positions
2ZJX 2008-10-21 1.09 Bovine pancreatic trypsin inhibitor (BPTI) containing only the [5,55] disulfide bond
1BPI 1995-06-03 1.09 THE STRUCTURE OF BOVINE PANCREATIC TRYPSIN INHIBITOR AT 125K: DEFINITION OF CARBOXYL-TERMINAL RESIDUES GLYCINE-57 AND ALANINE-58
5XX2 2018-07-04 1.12 A BPTI-[5,55] variant with C14GA38L mutations
5XX3 2018-07-04 1.12 A BPTI-[5,55] variant with C14GA38G mutations
4Y0Y 2015-06-24 1.25 Trypsin in complex with with BPTI
5XX8 2018-07-04 1.3 Hetero-micro-seeding: Crystal structure of BPTI-[555]C14GA38I variant using micro-seeds from -C14GA38L variant
3P95 2011-08-31 1.3 Human mesotrypsin complexed with bovine pancreatic trypsin inhibitor variant (BPTI-K15R/R17D)
4Y11 2015-06-24 1.3 Trypsin in complex with with BPTI mutant (2S)-2-amino-4,4,4-trifluorobutanoic acid
3WNY 2014-06-18 1.3 A simplified BPTI variant with poly Lys amino acid tag (C3K) at the C-terminus
5XX6 2018-07-04 1.31 Hetero-micro-seeding: Crystal structure of BPTI-[5,55]C14GA38I variant using micro-seeds from -C14GA38G variant
1P2J 2004-04-20 1.35 Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin
4Y0Z 2015-06-24 1.37 Trypsin in complex with with BPTI mutant AMINOBUTYRIC ACID
4Y10 2015-06-24 1.37 Trypsin in complex with with BPTI mutant (2S)-2-amino-4,4-difluorobutanoic acid
5XX5 2018-07-04 1.38 A BPTI-[5,55] variant with C14GA38I mutations
5XX7 2018-07-04 1.38 Hetero-micro-seeding: Crystal structure of BPTI-[5,55]C14GA38I variant using micro-seeds from -C14GA38I variant
2R9P 2007-12-11 1.4 Human mesotrypsin complexed with bovine pancreatic trypsin inhibitor(BPTI)
4DG4 2012-09-12 1.4 Human mesotrypsin-S39Y complexed with bovine pancreatic trypsin inhibitor (BPTI)
1QLQ 1999-10-05 1.42 Bovine Pancreatic Trypsin Inhibitor (BPTI) Mutant with Altered Binding Loop Sequence
2RA3 2007-12-11 1.46 Human cationic trypsin complexed with bovine pancreatic trypsin inhibitor (BPTI)
3FP7 2009-02-17 1.46 Anionic trypsin variant S195A in complex with bovine pancreatic trypsin inhibitor (BPTI) cleaved at the scissile bond (LYS15-ALA16) determined to the 1.46 A resolution limit
3FP8 2009-02-17 1.46 Anionic trypsin variant S195A in complex with bovine pancreatic trypsin inhibitor (BPTI) determined to the 1.46 A resolution limit
3FP6 2009-02-17 1.49 Anionic trypsin in complex with bovine pancreatic trypsin inhibitor (BPTI) determined to the 1.49 A resolution limit
4PTI 1983-01-18 1.5 THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS
1F7Z 2001-07-04 1.55 RAT TRYPSINOGEN K15A COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR
2FI5 2006-01-24 1.58 Crystal structure of a BPTI variant (Cys38->Ser) in complex with trypsin
2FI3 2006-01-24 1.58 Crystal structure of a BPTI variant (Cys14->Ser, Cys38->Ser) in complex with trypsin
2FI4 2006-01-24 1.58 Crystal structure of a BPTI variant (Cys14->Ser) in complex with trypsin
7PTI 1991-04-15 1.6 STRUCTURAL EFFECTS INDUCED BY REMOVAL OF A DISULFIDE BRIDGE. THE X-RAY STRUCTURE OF THE C30A(SLASH)C51A MUTANT OF BASIC PANCREATIC TRYPSIN INHIBITOR AT 1.6 ANGSTROMS
5JB5 2017-04-19 1.6 A simplified BPTI variant containing 22 alanines out of 58 residues
3P92 2011-08-31 1.6 Human mesotrypsin complexed with bovine pancreatic trypsin inhibitor variant (BPTI-K15R/R17G)
1P2K 2004-04-20 1.6 Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin
1AAL 1993-10-31 1.6 STRUCTURAL EFFECTS INDUCED BY MUTAGENESIS AFFECTED BY CRYSTAL PACKING FACTORS: THE STRUCTURE OF A 30-51 DISULFIDE MUTANT OF BASIC PANCREATIC TRYPSIN INHIBITOR
1D0D 2000-09-09 1.62 CRYSTAL STRUCTURE OF TICK ANTICOAGULANT PROTEIN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR
2FTL 2006-02-14 1.62 Crystal structure of trypsin complexed with BPTI at 100K
2FTM 2006-02-14 1.65 Crystal structure of trypsin complexed with the BPTI variant (Tyr35->Gly)
1F5R 2001-07-04 1.65 RAT TRYPSINOGEN MUTANT COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR
1P2I 2004-04-20 1.65 Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin
5XX4 2018-07-04 1.67 A BPTI-[5,55] variant with C14GA38K mutations
1YLD 2006-04-25 1.7 Trypsin/BPTI complex mutant
1T8O 2005-03-08 1.7 CRYSTAL STRUCTURE OF THE P1 TRP BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX
6PTI 1987-10-16 1.7 STRUCTURE OF FORM III CRYSTALS OF BOVINE PANCREATIC TRYPSIN INHIBITOR
4WWY 2015-07-22 1.7 human cationic trypsin G193R mutant in complex with bovine pancreatic trypsin inhibitor
3LDJ 2010-09-15 1.7 Crystal structure of aprotinin in complex with sucrose octasulfate: unusual interactions and implication for heparin binding
1FY8 2000-11-08 1.7 CRYSTAL STRUCTURE OF THE DELTAILE16VAL17 RAT ANIONIC TRYPSINOGEN-BPTI COMPLEX
1YKT 2006-04-25 1.7 Trypsin/Bpti complex mutant
1YLC 2006-04-25 1.7 Trypsin/BPTI complex mutant
3TGK 2001-07-04 1.7 TRYPSINOGEN MUTANT D194N AND DELETION OF ILE 16-VAL 17 COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI)
6F1F 2018-07-18 1.72 The methylene thioacetal BPTI (Bovine Pancreatic Trypsin Inhibitor) mutant structure
1P2M 2004-04-20 1.75 Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin
3BTH 2000-03-13 1.75 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI
1T8L 2005-03-08 1.75 CRYSTAL STRUCTURE OF THE P1 MET BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX
1T8N 2005-03-08 1.75 CRYSTAL STRUCTURE OF THE P1 THR BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX
3TGI 1998-12-23 1.8 WILD-TYPE RAT ANIONIC TRYPSIN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI)
3BTM 2000-03-13 1.8 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI
8PTI 1991-04-15 1.8 CRYSTAL STRUCTURE OF A Y35G MUTANT OF BOVINE PANCREATIC TRYPSIN INHIBITOR
1P2Q 2004-04-20 1.8 Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin
1T8M 2005-03-08 1.8 CRYSTAL STRUCTURE OF THE P1 HIS BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX
1P2N 2004-04-20 1.8 Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin
3U1J 2011-11-09 1.8 Aprotinin bound to Dengue virus protease
3BTF 2000-03-13 1.8 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI.
1EJM 2001-03-03 1.85 CRYSTAL STRUCTURE OF THE BPTI ALA16LEU MUTANT IN COMPLEX WITH BOVINE TRYPSIN
3BTK 2000-03-13 1.85 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI
1T7C 2005-03-08 1.85 CRYSTAL STRUCTURE OF THE P1 GLU BPTI MUTANT- BOVINE CHYMOTRYPSIN COMPLEX
3BTE 2000-03-15 1.85 The Crystal Structures of the Complexes Between Bovine Beta-Trypsin and Ten P1 Variants of BPTI.
3BTT 2000-03-13 1.9 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI
1NAG 1993-10-31 1.9 CREVICE-FORMING MUTANTS IN THE RIGID CORE OF BOVINE PANCREATIC TRYPSIN INHIBITOR: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A
5JB6 2017-04-19 1.9 A simplified BPTI variant containing 23 alanines out of 58 residues
3BTG 2000-03-13 1.9 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI
1TPA 1983-01-18 1.9 THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS
2PTC 1983-01-18 1.9 THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS
5JB7 2017-04-19 1.9 A simplified BPTI variant containing 24 alanines out of 58 residues
3BTQ 2000-03-15 1.9 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI
3BTD 2000-03-13 1.9 The Crystal Structures of the Complexes Between the Bovine Beta-Trypsin and Ten P1 Variants of BPTI.
3TPI 1983-01-18 1.9 THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS
2TGP 1983-01-18 1.9 THE GEOMETRY OF THE REACTIVE SITE AND OF THE PEPTIDE GROUPS IN TRYPSIN, TRYPSINOGEN AND ITS COMPLEXES WITH INHIBITORS
5JB4 2017-04-19 1.99 A simplified BPTI variant containing 21 alanines out 58 of residues
4BNR 2013-09-04 2.0 Extremely stable complex of crayfish trypsin with bovine trypsin inhibitor
1FAN 1993-10-31 2.0 CREVICE-FORMING MUTANTS IN THE RIGID CORE OF BOVINE PANCREATIC TRYPSIN INHIBITOR: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A
1P2O 2004-04-20 2.0 Structural consequences of accommodation of four non-cognate amino-acid residues in the S1 pocket of bovine trypsin and chymotrypsin
1BPT 1993-01-15 2.0 CREVICE-FORMING MUTANTS OF BPTI: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A
3BTW 2000-03-13 2.05 THE CRYSTAL STRUCTURES OF THE COMPLEXES BETWEEN BOVINE BETA-TRYPSIN AND TEN P1 VARIANTS OF BPTI
2HEX 1999-08-05 2.1 DECAMERS OBSERVED IN THE CRYSTALS OF BOVINE PANCREATIC TRYPSIN INHIBITOR
1FAK 1999-12-03 2.1 HUMAN TISSUE FACTOR COMPLEXED WITH COAGULATION FACTOR VIIA INHIBITED WITH A BPTI-MUTANT
1BZX 1998-11-11 2.1 THE CRYSTAL STRUCTURE OF ANIONIC SALMON TRYPSIN IN COMPLEX WITH BOVINE PANCREATIC TRYPSIN INHIBITOR
4WXV 2015-07-22 2.1 Human cationic trypsin K97D mutant in complex with bovine pancreatic trypsin inhibitor (BPTI)
1BRB 1994-07-31 2.1 CRYSTAL STRUCTURES OF RAT ANIONIC TRYPSIN COMPLEXED WITH THE PROTEIN INHIBITORS APPI AND BPTI
2TPI 1982-03-04 2.1 ON THE DISORDERED ACTIVATION DOMAIN IN TRYPSINOGEN. CHEMICAL LABELLING AND LOW-TEMPERATURE CRYSTALLOGRAPHY
3TGJ 1998-12-23 2.2 S195A TRYPSINOGEN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR (BPTI)
4TPI 1985-11-08 2.2 THE REFINED 2.2-ANGSTROMS (0.22-NM) X-RAY CRYSTAL STRUCTURE OF THE TERNARY COMPLEX FORMED BY BOVINE TRYPSINOGEN, VALINE-VALINE AND THE ARG15 ANALOGUE OF BOVINE PANCREATIC TRYPSIN INHIBITOR
3LDI 2010-06-23 2.2 Crystal structure of aprotinin in complex with sucrose octasulfate: unusual interactions and implication for heparin binding
1BTI 1993-10-31 2.2 CREVICE-FORMING MUTANTS IN THE RIGID CORE OF BOVINE PANCREATIC TRYPSIN INHIBITOR: CRYSTAL STRUCTURES OF F22A, Y23A, N43G, AND F45A
1BTH 1997-12-24 2.3 STRUCTURE OF THROMBIN COMPLEXED WITH BOVINE PANCREATIC TRYPSIN INHIBITOR
2IJO 2007-05-15 2.3 Crystal Structure of the West Nile virus NS2B-NS3 protease complexed with bovine pancreatic trypsin inhibitor
5YVU 2018-11-28 2.49 Crystal structures of unlinked full length NS3 from Dengue virus provide insights into dynamics of protease domain
2KAI 1984-07-19 2.5 REFINED 2.5 ANGSTROMS X-RAY CRYSTAL STRUCTURE OF THE COMPLEX FORMED BY PORCINE KALLIKREIN A AND THE BOVINE PANCREATIC TRYPSIN INHIBITOR. CRYSTALLIZATION, PATTERSON SEARCH, STRUCTURE DETERMINATION, REFINEMENT, STRUCTURE AND COMPARISON WITH ITS COMPONENTS AND WITH THE BOVINE TRYPSIN-PANCREATIC TRYPSIN INHIBITOR COMPLEX
1BZ5 1998-11-11 2.58 EVIDENCE OF A COMMON DECAMER IN THREE CRYSTAL STRUCTURES OF BPTI, CRYSTALLIZE FROM THIOCYANATE, CHLORIDE OR SULFATE
5YW1 2019-01-02 2.6 Crystal structure of full length NS3 protein (eD4NS2BNS3) in complex with Bovine Pancreatic Trypsin Inhibitor
3LDM 2010-06-23 2.6 Crystal structure of aprotinin in complex with sucrose octasulfate: unusual interactions and implication for heparin binding
1CBW 1997-07-23 2.6 BOVINE CHYMOTRYPSIN COMPLEXED TO BPTI
1BHC 1998-09-16 2.7 BOVINE PANCREATIC TRYPSIN INHIBITOR CRYSTALLIZED FROM THIOCYANATE
1MTN 1996-08-17 2.8 BOVINE ALPHA-CHYMOTRYPSIN:BPTI CRYSTALLIZATION
3GYM 2009-05-05 2.8 Structure of Prostasin in Complex with Aprotinin
1B0C 1998-11-11 2.8 EVIDENCE OF A COMMON DECAMER IN THREE CRYSTAL STRUCTURES OF BPTI, CRYSTALLIZED FROM THIOCYANATE, CHLORIDE OR SULFATE
1EAW 2002-01-28 2.93 Crystal structure of the MTSP1 (matriptase)-BPTI (aprotinin) complex

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
91.0 Pancreatic trypsin inhibitor P04815 BPT2_BOVIN
100.0 Pancreatic trypsin inhibitor P00974 BPT1_BOVIN
91.4 Pancreatic trypsin inhibitor P00975 IBPS_BOVIN