A comprehensive, high-resolution map of a gene's fitness landscape.


Abstract

Mutations are central to evolution, providing the genetic variation upon which selection acts. A mutation's effect on the suitability of a gene to perform a particular function (gene fitness) can be positive, negative, or neutral. Knowledge of the distribution of fitness effects (DFE) of mutations is fundamental for understanding evolutionary dynamics, molecular-level genetic variation, complex genetic disease, the accumulation of deleterious mutations, and the molecular clock. We present comprehensive DFEs for point and codon mutants of the Escherichia coli TEM-1 β-lactamase gene and missense mutations in the TEM-1 protein. These DFEs provide insight into the inherent benefits of the genetic code's architecture, support for the hypothesis that mRNA stability dictates codon usage at the beginning of genes, an extensive framework for understanding protein mutational tolerance, and evidence that mutational effects on protein thermodynamic stability shape the DFE. Contrary to prevailing expectations, we find that deleterious effects of mutation primarily arise from a decrease in specific protein activity and not cellular protein levels.

Submission Details

ID: 9qCh9wU7

Submitter: Shu-Ching Ou

Submission Date: July 23, 2018, 8:51 p.m.

Version: 1

Publication Details
Firnberg E;Labonte JW;Gray JJ;Ostermeier M,Mol Biol Evol (2014) A comprehensive, high-resolution map of a gene's fitness landscape. PMID:24567513
Additional Information

Study Summary

Number of data points 10938
Proteins Beta-lactamase TEM
Unique complexes 5199
Assays/Quantities/Protocols Experimental Assay: Mutational Tolerance
Libraries Protein fitness values for ampicillin resistance

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
1AXB 1997-10-14T00:00:00+0000 2.0 TEM-1 BETA-LACTAMASE FROM ESCHERICHIA COLI INHIBITED WITH AN ACYLATION TRANSITION STATE ANALOG
1BT5 1998-09-02T00:00:00+0000 1.8 CRYSTAL STRUCTURE OF THE IMIPENEM INHIBITED TEM-1 BETA-LACTAMASE FROM ESCHERICHIA COLI
1BTL 1993-11-01T00:00:00+0000 1.8 CRYSTAL STRUCTURE OF ESCHERICHIA COLI TEM1 BETA-LACTAMASE AT 1.8 ANGSTROMS RESOLUTION
1CK3 1999-04-27T00:00:00+0000 2.28 N276D MUTANT OF ESCHERICHIA COLI TEM-1 BETA-LACTAMASE
1ERM 2000-04-06T00:00:00+0000 1.7 X-RAY CRYSTAL STRUCTURE OF TEM-1 BETA LACTAMASE IN COMPLEX WITH A DESIGNED BORONIC ACID INHIBITOR (1R)-1-ACETAMIDO-2-(3-CARBOXYPHENYL)ETHANE BORONIC ACID
1ERO 2000-04-06T00:00:00+0000 2.1 X-RAY CRYSTAL STRUCTURE OF TEM-1 BETA LACTAMASE IN COMPLEX WITH A DESIGNED BORONIC ACID INHIBITOR (1R)-2-PHENYLACETAMIDO-2-(3-CARBOXYPHENYL)ETHYL BORONIC ACID
1ERQ 2000-04-06T00:00:00+0000 1.9 X-RAY CRYSTAL STRUCTURE OF TEM-1 BETA LACTAMASE IN COMPLEX WITH A DESIGNED BORONIC ACID INHIBITOR (1R)-1-ACETAMIDO-2-(3-CARBOXY-2-HYDROXYPHENYL)ETHYL BORONIC ACID
1ESU 2000-04-11T00:00:00+0000 2.0 S235A MUTANT OF TEM1 BETA-LACTAMASE
1FQG 2000-09-05T00:00:00+0000 1.7 MOLECULAR STRUCTURE OF THE ACYL-ENZYME INTERMEDIATE IN TEM-1 BETA-LACTAMASE
1JTD 2001-08-20T00:00:00+0000 2.3 Crystal structure of beta-lactamase inhibitor protein-II in complex with TEM-1 beta-lactamase

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
99.7 Beta-lactamase TEM Q48406 BLAT_KLEOX
100.0 Beta-lactamase TEM P62594 BLAT_SALTI
100.0 Beta-lactamase TEM P62593 BLAT_ECOLX