Structural and energetic differences between insertions and substitutions in staphylococcal nuclease.


In a previous study, the small protein staphylococcal nuclease was shown to readily accommodate single alanine and glycine insertions, with average losses in stability comparable to substitutions at the same sites (PROT. 7:299-305, 1990). To more fully explore this unexpected adaptability to changes in residue spacing, 2 double amino acid insertions (alanyl-glycine, glycyl-glycine) and 3 additional single amino acid insertions with dissimilar side chains (proline, leucine, and glutamine) were constructed at 10 of the sites previously studied. At 8 of these sites, the type of amino acid side chain on the inserted residue significantly influenced the stability of the mutant protein. However, at 9 of the 10 sites, the double insertions were found to be no more destabilizing than the single alanine or glycine insertions. In contrast, double substitution mutations of staphylococcal nuclease, which replace two adjacent residues with alanine, do not show this striking degree of non-additivity. A comparison of the effects of single glutamine and single glycine insertions with alanyl-glycine insertions indicates that insertion of alanine into the peptide backbone is, on average, less destabilizing than appending the equivalent atoms onto the side chain of a glycine insertion. To explain their very different energetic effects, we propose that, unlike most substitutions, the inserted residue(s) must induce lateral displacements of the polypeptide chain, forcing the folded conformation away from that of wild type. The resulting obligatory shifts in the positioning of residues flanking the insertion generate a large number of degrees of freedom around which the mutant structure can relax.(ABSTRACT TRUNCATED AT 250 WORDS) Study holds ProTherm entries: 10132, 10133, 10134, 10135, 10136, 10137, 10138 Extra Details:

Submission Details

ID: 8raAnf6u

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:39 p.m.

Version: 1

Publication Details
Sondek J;Shortle D,Proteins (1992) Structural and energetic differences between insertions and substitutions in staphylococcal nuclease. PMID:1620695
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Thermonuclease P00644 NUC_STAAU
99.3 Thermonuclease Q5HHM4 NUC_STAAC
99.1 Thermonuclease Q99VJ0 NUC_STAAM
99.1 Thermonuclease Q7A6P2 NUC_STAAN
99.3 Thermonuclease Q6GB41 NUC_STAAS
99.3 Thermonuclease Q8NXI6 NUC_STAAW
99.3 Thermonuclease Q6GIK1 NUC_STAAR