Biophysical properties of human antibody variable domains.


Abstract

There are great demands on the stability, expression yield and resistance to aggregation of antibody fragments. To untangle intrinsic domain effects from domain interactions, we present first a systematic evaluation of the isolated human immunoglobulin variable heavy (V(H)) and light (V(L)) germline family consensus domains and then a systematic series of V(H)-V(L) combinations in the scFv format. The constructs were evaluated in terms of their expression behavior, oligomeric state in solution and denaturant-induced unfolding equilibria under non-reducing conditions. The seven V(H) and seven V(L) domains represent the consensus sequences of the major human germline subclasses, derived from the Human Combinatorial Antibody Library (HuCAL). The isolated V(H) and V(L) domains with the highest thermodynamic stability and yield of soluble protein were V(H)3 and V(kappa)3, respectively. Similar measurements on all domain combinations in scFv fragments allowed the scFv fragments to be classified according to thermodynamic stability and in vivo folding yield. The scFv fragments containing the variable domain combinations H3kappa3, H1bkappa3, H5kappa3 and H3kappa1 show superior properties concerning yield and stability. Domain interactions diminish the intrinsic differences of the domains. ScFv fragments containing V(lambda) domains show high levels of stability, even though V(lambda) domains are surprisingly unstable by themselves. This is due to a strong interaction with the V(H) domain and depends on the amino acid sequence of the CDR-L3. On the basis of these analyses and model structures, we suggest possibilities for further improvement of the biophysical properties of individual frameworks and give recommendations for library design. Study holds ProTherm entries: 15698, 15699, 15700, 15701, 15702, 15703, 15704, 15705, 15706, 15707, 15708, 15709, 15710, 15711 Extra Details: VH-1a family antibody engineering; protein stability; expression; scFv fragment

Submission Details

ID: 8QMTy5k53

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:46 p.m.

Version: 1

Publication Details
Ewert S;Huber T;Honegger A;Pl├╝ckthun A,J. Mol. Biol. (2003) Biophysical properties of human antibody variable domains. PMID:12498801
Additional Information

Sequence Assay Result Units