Thermal stability of collagen fibers in ethylene glycol.


Abstract

The mechanism that renders collagen molecules more stable when precipitated as fibers than the same molecules in solution is controversial. According to the polymer-melting mechanism the presence of a solvent depresses the melting point of the polymer due to a thermodynamic mechanism resembling the depression of the freezing point of a solvent due to the presence of a solute. On the other hand, according to the polymer-in-a-box mechanism, the change in configurational entropy of the collagen molecule on denaturation is reduced by its confinement by surrounding molecules in the fiber. Both mechanisms predict an approximately linear increase in the reciprocal of the denaturation temperature with the volume fraction (epsilon) of solvent, but the polymer-melting mechanism predicts that the slope is inversely proportional to the molecular mass of the solvent (M), whereas the polymer-in-a-box mechanism predicts a slope that is independent of M. Differential scanning calorimetry was used to measure the denaturation temperature of collagen in different concentrations of ethylene glycol (M = 62) and the slope found to be (7.29 +/- 0.37) x 10(-4) K(-1), compared with (7.31 +/- 0.42) x 10(-4) K(-1) for water (M = 18). This behavior was consistent with the polymer-in-a-box mechanism but conflicts with the polymer-melting mechanism. Calorimetry showed that the enthalpy of denaturation of collagen fibers in ethylene glycol was high, varied only slowly within the glycol volume fraction range 0.2 to 1, and fell rapidly at low epsilon. That this was caused by the disruption of a network of hydrogen-bonded glycol molecules surrounding the collagen is the most likely explanation. Study holds ProTherm entries: 10517, 10518 Extra Details: dH=5.41 (kJ/mol residue), dCp=0.15 (J/g/K). Solvent is 0.5 M acetic acid in water. Scanning rate = 0.25 K/min. polymer-melting mechanism; thermodynamic mechanism;,surrounding molecules; hydrogen-bonded network

Submission Details

ID: 7aVvS2sL3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:40 p.m.

Version: 1

Publication Details
Miles CA;Burjanadze TV,Biophys. J. (2001) Thermal stability of collagen fibers in ethylene glycol. PMID:11222308
Additional Information

Study Summary

Number of data points 2
Proteins Type 1 Collagen ; Collagen alpha-1(I) chain
Unique complexes 1
Assays/Quantities/Protocols Experimental Assay: Tm
Libraries Mutations for sequence A:EMSYGYDEKSTGISVPGPMGPSGPRGLPGPPGAPGPQGFQGPPGEPGEPGASGPMGPRGPPGPPGKNGDDGEAGKPGRPGERGPPGPQGARGLPGTAGLPGMKGHRGFSGLDGAKGDAGPAGPKGEPGSPGENGAPGQMGPRGLPGERGRPGAPGPAGARGNDGAAGAAGPPGPTGPTGPPGFPGAVGAKGEAGPEGARGSEGPQGVRGEPGPPGPAGAAGPAGNPGADGQPGAKGANGAPGIAGAPGFPGARGPSGPEGPSGAPGPKGNSGEPGAPGNKGDTGAKGEPGPAGVQGPPGPAGEEGKRGARGEPGPSGLPGPPGERGGPGSRGFPGADGVAGPKGPAGERGSPGPAGPKGSPGEAGRPGEAGLPGAKGLTGSPGSPGPDGKTGPPGPAGEDGRPGPAGPPGARGQAGVMGFPGPKGAAGEPGKAGERGVPGPPGAVGPAGKDGEAGAQGPPGPAGPAGERGEQGPAGSPGFQGLPGPAGPPGEAGKPGEQGVPGDLGAPGPSGARGERGFPGERGVEGPPGPAGPRGANGAPGNDGAKGDAGAPGAPGSQGAPGLQGMPGERGAAGLPGPKGDRGDAGPKGADGAPGKDGVRGLTGPIGPPGPAGAPGDKGEAGPSGPAGPTGARGAPGDRGEPGPPGPAGFAGPPGADGQPGAKGEPGDAGAKGDAGPPGPAGPAGPPGPIGNVGAPGPKGARGSAGPPGATGFPGAAGRVGPPGPSGNAGPPGPPGPAGKEGSKGPRGETGPAGRPGEVGPPGPPGPAGEKGAPGADGPAGAPGTPGPQGIAGQRGVVGLPGQRGERGFPGLPGPSGEPGKQGPSGASGERGPPGPMGPPGLAGPPGESGREGAPGAEGSPGRDGSPGAKGDRGETGPAGPPGAPGAPGAPGPVGPAGKSGDRGETGPAGPIGPVGPAGARGPAGPQGPRGDKGETGEEGDRGIKGHRGFSGLQGPPGPPGSPGEQGPSGASGPAGPRGPPGSAGSPGKDGLNGLPGPIGPPGPRGRTGDAGPAGPPGPPGPPGPPGPPSGGYDLSFLPQPPQQKAHDKGRYY/B:EFDAKGGGPGPMGLMGPRGPPGASGAPGPQGFQGPPGEPGEPGQTGPAGARGPPGPPGKAGEDGHPGKPGRPGERGVPGPQGARGFPGTPGLPGFKGIRGHNGLDGLTGQPGAPGVKGEPGAPGENGTPGQKGARGLPGERGRVGAPGPAGARGSDGSVGPVGPAGPIGSAGPPGFPGAPGPKGELGPVGNPGPAGPAGPRGEVGLPGLSGPVGPPGNAGPNGLPGAKGAAGLPGVAGAPGLPGPRGIPGPVGAAGATGARGLVGEPGPAGSKGESGNKGEPGAVGQPGPPGPSGEEGKRGSTGEIGPAGPPGPPGLRGNPGSRGLPGADGVAGVMGPAGSRGTSGPAGVRGPNGDSGRPGEPGLMGPRGFPGSPGNIGPAGKEGPVGLPGIDGRPGPIGPAGPRGEAGAIGFPGPKGPTGEPGKPGEKGNVGLAGARGAPGPDGNNGAQGPPGLQGVQGEKGEQGPAGPPGFQGLPGPAGPAGEAGKPGERGLHGEFGLPGPAGARGERGPPGERGAAGPTGPIGSRGPSGPPGPDGNKGEAGAVGPAGAPGPAGPPGIPGERGVAGVPGGKGEKGAPGLRGDTGATGRDGARGLPGAIGAPGPAGGAGDRGEGGPAGPAGPAGARGIRGERGEPGPVGPSGFAGPAGAAGQPGAKGERGTKGPVGEQGPVGPQGPVGAAGPPGPVGAAGPAGPRGDAGPTGMTGFPGAAGRTGPPGPSGLTGPPGPPGAAGKEGIRGPRGDQGPVGRSGETGATGPTGFVGEKGPTGEPGSAGPPGPPGPQGLLGAPGFLGLPGSRGERGLPGVAGSVGEPGPLGIAGPPGARGPPGNVGNPGVNGAPGEAGRDGNPGNDGPPGRDGQPGHKGERGTPGNAGPPGAVGPVGPVGEPGKLGNRGEPGPAGAVGPAGAVGPRGPSGPQGIRGDDGEPGDKGDKGIKGDRGHNGLQGLPGLAGHHGDQGAPGAVGPAGPRGPAGPSGPAGKIGRIGAVGPAGAAGIRGSQGSQGPAGPPGPPGPPGPPGPPSGGYEF/C:EMSYGYDEKSTGISVPGPMGPSGPRGLPGPPGAPGPQGFQGPPGEPGEPGASGPMGPRGPPGPPGKNGDDGEAGKPGRPGERGPPGPQGARGLPGTAGLPGMKGHRGFSGLDGAKGDAGPAGPKGEPGSPGENGAPGQMGPRGLPGERGRPGAPGPAGARGNDGAAGAAGPPGPTGPTGPPGFPGAVGAKGEAGPEGARGSEGPQGVRGEPGPPGPAGAAGPAGNPGADGQPGAKGANGAPGIAGAPGFPGARGPSGPEGPSGAPGPKGNSGEPGAPGNKGDTGAKGEPGPAGVQGPPGPAGEEGKRGARGEPGPSGLPGPPGERGGPGSRGFPGADGVAGPKGPAGERGSPGPAGPKGSPGEAGRPGEAGLPGAKGLTGSPGSPGPDGKTGPPGPAGEDGRPGPAGPPGARGQAGVMGFPGPKGAAGEPGKAGERGVPGPPGAVGPAGKDGEAGAQGPPGPAGPAGERGEQGPAGSPGFQGLPGPAGPPGEAGKPGEQGVPGDLGAPGPSGARGERGFPGERGVEGPPGPAGPRGANGAPGNDGAKGDAGAPGAPGSQGAPGLQGMPGERGAAGLPGPKGDRGDAGPKGADGAPGKDGVRGLTGPIGPPGPAGAPGDKGEAGPSGPAGPTGARGAPGDRGEPGPPGPAGFAGPPGADGQPGAKGEPGDAGAKGDAGPPGPAGPAGPPGPIGNVGAPGPKGARGSAGPPGATGFPGAAGRVGPPGPSGNAGPPGPPGPAGKEGSKGPRGETGPAGRPGEVGPPGPPGPAGEKGAPGADGPAGAPGTPGPQGIAGQRGVVGLPGQRGERGFPGLPGPSGEPGKQGPSGASGERGPPGPMGPPGLAGPPGESGREGAPGAEGSPGRDGSPGAKGDRGETGPAGPPGAPGAPGAPGPVGPAGKSGDRGETGPAGPIGPVGPAGARGPAGPQGPRGDKGETGEEGDRGIKGHRGFSGLQGPPGPPGSPGEQGPSGASGPAGPRGPPGSAGSPGKDGLNGLPGPIGPPGPRGRTGDAGPAGPPGPPGPPGPPGPPSGGYDLSFLPQPPQQKAHDKGRYY

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
2LLP 2012-05-30 Solution structure of a THP type 1 alpha 1 collagen fragment (772-786)
5CTD 2016-08-03 1.6 Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a2a1a1 of type I collagen
1Q7D 2004-01-13 1.8 Structure of the integrin alpha2beta1 binding collagen peptide
5CTI 2016-08-03 1.9 Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a2a1a1 of type I collagen (native form)
3EJH 2009-02-03 2.1 Crystal Structure of the Fibronectin 8-9FnI Domain Pair in Complex with a Type-I Collagen Peptide
5CVA 2016-08-10 2.1 Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a1a2a1 of type I collagen
5K31 2017-03-22 2.2 Crystal structure of Human fibrillar procollagen type I C-propeptide Homo-trimer
5CVB 2016-08-10 2.25 Crystal structure of the type IX collagen NC2 hetero-trimerization domain with a guest fragment a1a1a1 of type I collagen
5OU9 2018-09-05 2.5 Crystal structure of Glycoprotein VI in complex with collagen-peptide (GPO)3
5OU8 2018-09-05 2.5 Crystal structure of Glycoprotein VI in complex with collagen-peptide (GPO)5
3GXE 2010-04-07 2.6 Complex of a Low Affinity Collagen Site with the Fibronectin 8-9FnI Domain Pair
3HR2 2009-07-14 5.16 Low resolution, molecular envelope structure of type I collagen in situ determined by fiber diffraction. Single type I collagen molecule, post rigid body refinement, 'relaxed'
3HQV 2009-07-14 5.16 Low resolution, molecular envelope structure of type I collagen in situ determined by fiber diffraction. Single type I collagen molecule, rigid body refinement

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
182.6 A,C Type 1 Collagen P02453 CO1A1_BOVIN
91.5 Collagen alpha-1(I) chain P02452 CO1A1_HUMAN
91.5 Collagen alpha-1(I) chain Q9XSJ7 CO1A1_CANLF
98.9 Collagen alpha-1(I) chain P11087 CO1A1_MOUSE
100.0 Collagen alpha-1(I) chain P02454 CO1A1_RAT