A calorimetric study of the thermal stability of barstar and its interaction with barnase.


Abstract

The temperature-induced unfolding of single, double, and triple mutants of barstar, the specific intracellular protein inhibitor of barnase from Bacillus amyloliquefaciens, has been studied by high-sensitivity differential scanning calorimetry. The thermal unfolding of barstar mutants, where at least one of the two cysteine residues in the molecule had been replaced by alanine, follows a two-state mechanism at neutral and alkaline pH. The unfolding enthalpy and heat capacity changes are slightly lower than those accepted for highly compact, small, globular proteins. We have found that at pH 2.5, where barstar seems to be in a molten globule state, the protein has a heat capacity between that of the native and the unfolded states and shows some tendency for association. Scanning calorimetry experiments were also extended to the barstar--barnase complex in the neutral and alkaline pH range. The binding constants obtained from DSC studies are similar to those already obtained from other (kinetic) studies. The interaction of barstar and barnase was also investigated by isothermal calorimetry in various buffers within the pH range 6.0-10.0 and a temperature range of 15-35 degrees C. The favorable enthalpy contribution to the binding is about 4 times higher than the entropic one at 25 degrees C. The overall data analysis of the combined calorimetric results has led to the thermodynamic characterization of barstar unfolding and the interaction of barstar and barnase over a wide range of temperatures. Study holds ProTherm entries: 5057, 5058, 5059, 5060, 5061, 5062, 5063, 5064 Extra Details: cysteine residues; two-state mechanism; molten globule state;,binding constants

Submission Details

ID: 5SBkzaAb

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:28 p.m.

Version: 1

Publication Details
Martínez JC;Filimonov VV;Mateo PL;Schreiber G;Fersht AR,Biochemistry (1995) A calorimetric study of the thermal stability of barstar and its interaction with barnase. PMID:7711042
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
2KF5 2009-12-08 Barnase bound to d(CGAC), low pressure
1BTB 1994-07-31 THREE-DIMENSIONAL SOLUTION STRUCTURE AND 13C ASSIGNMENTS OF BARSTAR USING NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
2KF3 2009-12-08 Barnase, low pressure reference NMR structure
1BNR 1995-07-31 BARNASE
1BTA 1994-07-31 THREE-DIMENSIONAL SOLUTION STRUCTURE AND 13C ASSIGNMENTS OF BARSTAR USING NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY
1FW7 2003-06-10 NMR STRUCTURE OF 15N-LABELED BARNASE
1AB7 1997-09-04 NMR 15N RELAXATION AND STRUCTURAL STUDIES REVEAL CONFORMATIONAL EXCHANGE IN BARSTAR C40/82A, 30 STRUCTURES
1L1K 2002-12-04 NMR Identification and Characterization of the Flexible Regions in the 160 KD Molten Globule-like Aggregate of Barstar at Low pH
2KF6 2009-12-08 Barnase bound to d(CGAC) high pressure
2KF4 2009-12-08 Barnase high pressure structure
2C4B 2005-11-21 1.3 Inhibitor cystine knot protein McoEeTI fused to the catalytically inactive barnase mutant H102A
1A2P 1998-04-29 1.5 BARNASE WILDTYPE STRUCTURE AT 1.5 ANGSTROMS RESOLUTION
2ZA4 2008-05-20 1.58 Crystal Structural Analysis of Barnase-barstar Complex
1B20 1998-12-09 1.7 DELETION OF A BURIED SALT-BRIDGE IN BARNASE
1AY7 1999-03-02 1.7 RIBONUCLEASE SA COMPLEX WITH BARSTAR
1BRN 1994-01-31 1.76 SUBSITE BINDING IN AN RNASE: STRUCTURE OF A BARNASE-TETRANUCLEOTIDE COMPLEX AT 1.76 ANGSTROMS RESOLUTION
1B2X 1998-12-09 1.8 BARNASE WILDTYPE STRUCTURE AT PH 7.5 FROM A CRYO_COOLED CRYSTAL AT 100K
1B2S 1998-12-08 1.82 STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE
1X1Y 2005-04-26 1.9 Water-mediate interaction at aprotein-protein interface
1RNB 1992-07-15 1.9 CRYSTAL STRUCTURE OF A BARNASE-D(*GP*C) COMPLEX AT 1.9 ANGSTROMS RESOLUTION
1BRI 1995-07-10 1.9 BARNASE MUTANT WITH ILE 76 REPLACED BY ALA
3KCH 2010-03-09 1.94 Baranase crosslinked by glutaraldehyde
2F5M 2006-04-25 1.95 Cross-linked barnase soaked in bromo-ethanol
2F56 2006-04-25 1.96 Barnase cross-linked with glutaraldehyde soaked in 6M urea
1BRJ 1995-07-10 2.0 BARNASE MUTANT WITH ILE 88 REPLACED BY ALA
1B21 1998-12-09 2.0 DELETION OF A BURIED SALT BRIDGE IN BARNASE
1BRH 1995-07-10 2.0 BARNASE MUTANT WITH LEU 14 REPLACED BY ALA
1BSB 1994-01-31 2.0 CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE
1BSE 1994-01-31 2.0 CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE
1BRK 1995-07-10 2.0 BARNASE MUTANT WITH ILE 96 REPLACED BY ALA
1BNF 1995-07-10 2.0 BARNASE T70C/S92C DISULFIDE MUTANT
1BSA 1994-01-31 2.0 CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE
2F5W 2006-04-25 2.0 Cross-linked barnase soaked in 3 M thiourea
1BRS 1994-06-22 2.0 PROTEIN-PROTEIN RECOGNITION: CRYSTAL STRUCTURAL ANALYSIS OF A BARNASE-BARSTAR COMPLEX AT 2.0-A RESOLUTION
1BSC 1994-01-31 2.0 CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE
2HXX 2006-08-22 2.0 Aminotryptophan Barstar
1B2Z 1998-12-09 2.03 DELETION OF A BURIED SALT BRIDGE IN BARNASE
1BNS 1994-06-22 2.05 STRUCTURAL STUDIES OF BARNASE MUTANTS
1B2U 1998-12-09 2.1 STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE
1BNJ 1995-09-15 2.1 BARNASE WILDTYPE STRUCTURE AT PH 9.0
1BNG 1995-07-10 2.1 BARNASE S85C/H102C DISULFIDE MUTANT
1B27 1998-12-09 2.1 STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE
1BNI 1995-09-15 2.1 BARNASE WILDTYPE STRUCTURE AT PH 6.0
1X1W 2005-04-26 2.1 Water-mediate interaction at aprotein-protein interface
1BNE 1995-07-10 2.1 BARNASE A43C/S80C DISULFIDE MUTANT
2F4Y 2006-04-25 2.15 Barnase cross-linked with glutaraldehyde
3Q3F 2012-01-25 2.17 Engineering Domain-Swapped Binding Interfaces by Mutually Exclusive Folding: Insertion of Ubiquitin into position 103 of Barnase
1YVS 1999-02-02 2.2 Trimeric domain swapped barnase
1BAN 1993-10-31 2.2 THE CONTRIBUTION OF BURIED HYDROGEN BONDS TO PROTEIN STABILITY: THE CRYSTAL STRUCTURES OF TWO BARNASE MUTANTS
1BRG 1994-06-22 2.2 CRYSTALLOGRAPHIC ANALYSIS OF PHE->LEU SUBSTITUTION IN THE HYDROPHOBIC CORE OF BARNASE
1BAO 1993-10-31 2.2 THE CONTRIBUTION OF BURIED HYDROGEN BONDS TO PROTEIN STABILITY: THE CRYSTAL STRUCTURES OF TWO BARNASE MUTANTS
3DA7 2009-04-14 2.25 A conformationally strained, circular permutant of barnase
1X1X 2005-04-26 2.3 Water-mediate interaction at aprotein-protein interface
1X1U 2005-04-26 2.3 Water-mediate interaction at aprotein-protein interface
1BSD 1994-01-31 2.3 CRYSTAL STRUCTURAL ANALYSIS OF MUTATIONS IN THE HYDROPHOBIC CORES OF BARNASE
1B3S 1998-12-09 2.39 STRUCTURAL RESPONSE TO MUTATION AT A PROTEIN-PROTEIN INTERFACE
1BGS 1994-04-30 2.6 RECOGNITION BETWEEN A BACTERIAL RIBONUCLEASE, BARNASE, AND ITS NATURAL INHIBITOR, BARSTAR
1A19 1998-04-08 2.76 BARSTAR (FREE), C82A MUTANT

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
100.0 Barstar P11540 BARS_BACAM
97.3 Ribonuclease P35078 RN_BACCI
100.0 Ribonuclease P00648 RNBR_BACAM