Influence of Ca2+ binding on the structure and stability of bovine alpha-lactalbumin studied by circular dichroism and nuclear magnetic resonance spectra.


Abstract

Both the Ca2+-bound and Ca2+-free forms of alpha-lactalbumin can assume essentially the same folded conformation as evidenced by similarity in their CD and proton n.m.r. spectra. Thermal unfolding followed by the aromatic CD has shown that the stability of the folded state is markedly enhanced by Ca2+ and that the stabilization is almost entirely entropic; addition of 0.1 mM Ca2+ shifts the transition temperature from 40 degrees to 62 degrees in 0.1M Na+ at pH 7.0. The enthalpy change of the unfolding, coincident between the two forms, is, however, significantly smaller than that known for lysozyme. The n.m.r. spectrum under the condition that both the forms of the protein are in the folded state reflects minor environmental changes of certain protons upon Ca2+ binding, and these changes are shown to afford useful probes for assessment of the location of the binding site. From the pH dependence and temperature dependence of the spectrum and also by using spin decoupling in the aromatic region (6.4-8.7 p.p.m.), it is shown that none of histidyl residues are affected and that at least two tryptophanyl ring protons experience environmental changes upon Ca2+ binding to the folded apo-protein. Effect of free excess Ca2+ on the spectrum has also shown that in native alpha-lactalbumin there is only one Ca2+-binding site that is detectable by the present method. Study holds ProTherm entries: 10111 Extra Details: alfa-lactalbumin; Ca2+ binding; CD spectrum; n.m.r. spectrum;,thermal unfolding

Submission Details

ID: 3oqN5nZg3

Submitter: Connie Wang

Submission Date: April 24, 2018, 8:39 p.m.

Version: 1

Publication Details
Kuwajima K;Harushima Y;Sugai S,Int. J. Pept. Protein Res. (1986) Influence of Ca2+ binding on the structure and stability of bovine alpha-lactalbumin studied by circular dichroism and nuclear magnetic resonance spectra. PMID:3949437
Additional Information

Structure view and single mutant data analysis

Study data

No weblogo for data of varying length.
Colors: D E R H K S T N Q A V I L M F Y W C G P
 

Data Distribution

Studies with similar sequences (approximate matches)

Correlation with other assays (exact sequence matches)


Relevant PDB Entries

Structure ID Release Date Resolution Structure Title
3B0K 2012-06-13 1.6 Crystal structure of alpha-lactalbumin
1FKQ 2001-02-14 1.8 RECOMBINANT GOAT ALPHA-LACTALBUMIN T29V
6IP9 2019-02-20 1.85 Crystal Structure of Lanthanum ion (La3+) bound bovine alpha-lactalbumin
1HMK 1999-11-26 2.0 RECOMBINANT GOAT ALPHA-LACTALBUMIN
1FKV 2001-02-14 2.0 RECOMBINANT GOAT ALPHA-LACTALBUMIN T29I
1F6S 2000-12-13 2.2 CRYSTAL STRUCTURE OF BOVINE ALPHA-LACTALBUMIN
1F6R 2000-12-13 2.2 CRYSTAL STRUCTURE OF APO-BOVINE ALPHA-LACTALBUMIN
2G4N 2007-02-20 2.3 Anomalous substructure of alpha-lactalbumin
1HFZ 1997-07-29 2.3 ALPHA-LACTALBUMIN
1HFY 1997-07-07 2.3 ALPHA-LACTALBUMIN

Relevant UniProtKB Entries

Percent Identity Matching Chains Protein Accession Entry Name
95.1 Alpha-lactalbumin P00712 LALBA_CAPHI
97.2 Alpha-lactalbumin P09462 LALBA_SHEEP
98.6 Alpha-lactalbumin Q9TSN6 LALBA_BUBBU
99.3 Alpha-lactalbumin Q9TSR4 LALBA_BOSMU
100.0 Alpha-lactalbumin P00711 LALBA_BOVIN